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Abstract 
 

Norbert Wiener [28] developed the concept of interval order to clarify the link between the notions of a 
time instant and a time period. This was a problem on which Bertrand Russell [18] was working at the 
time. Interval orders are especially essential in the study of linear-interval and linear-
semiorderdimensions. This kind of dimensions, which we refer to as hybrid order dimensions, provides a 
common generalization of linear order and interval order (semiorder) dimension and is arguably the most 
important measure of the complexity of ordered sets. As a result, they play a significant role in a wide 
range of areas of pure and applied mathematics, graph theory, computer science, and engineering. In this 
paper, we give three main results of the theory of hybrid order dimensions. More precisely, we obtain 
necessary and sufficient conditions for a binary relation to have an interval order (resp. linear- interval 
order, linear-simiorder) extension as well as a realizer of interval orders (resp. linear-interval orders, 
linear-simiorders). In addition, we characterize the interval order (respectively linear-interval order, linear-
simiorder) dimension. Since the hybrid order dimension of a binary relation is less than its linear order 
dimension, these results will allow for the development of more efficient algorithms in graph theory and 
computer science. 
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1 Introduction 
 

Zeno's paradox posed for the first time the question of whether time should be represented by a discrete or a 
continuous variable. The concept of a durationless temporal instant is quite sophisticated, the result of many 
centuries of experimentation in response to Zeno's puzzle. Time has long been accepted as a structure isomorphic 
to real numbers and since any experience has some duration, we've come to think of times as either durationless 
instants or collections of such instants. As a result, it is standard practice to define time intervals using instant time 
points and their precedence relationship (sets of instant time points). Russell, however, proposed to go the other 
way around: temporal instants should be constructed from what he calls events. He wanted especially to derive, an 
instant of time (or of a point on a line) from a period of time (or from an interval on this line). In his paper [28], 
Wiener provides an axiomatic frame for Russell's problem in which instants can be defined. To do that, he defines 

a precedence relation 𝑅 defined on a set of events 𝑋 satisfying the following condition: 
 

∀𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋,  𝑎, 𝑏 ∈ 𝑅,  𝑐, 𝑏 ∉ 𝑅 and 𝑐, 𝑑 ∈ 𝑅 imply 𝑎, 𝑑 ∈ 𝑅 (⋆) 

 

where(𝑥, 𝑦) ∈ 𝑅 means that 𝑥, 𝑦 ∈ 𝑋 and 𝑥temporally wholly precedes 𝑦, i.e., every time at which𝑥 exists is 
temporally precedent to any time at which y exists. Russell and Wiener postulate that for each 𝑥 ∈ 𝑋, (𝑥, 𝑥) ∉ 𝑅 
holds. We shall call statement (⋆) the Russell - Wiener axiom. Intuitively the formula states that if 𝑎 precedes b and 
𝑏is simultaneous with 𝑐, and 𝑐 procedes𝑑, then𝑎 precedes 𝑑. The name interval order for these relations first 
appeared by Fishburn [6], [7]. Interval orders are important special classes of strict partial orders that arise in 
problems in graph theory, computer science, economics, psychology, biology, scheduling, and so on. For example, 
interval orders and the graph theory associated with their incomparability graphs, also called interval graphs, 
provide a natural model for the study of scheduling and preference models. Interval orders also have applications 
in distributed computing (vector clocks and global predicate detection), concurrency theory (pomsets and 
occurrence nets), programming language semantics (fixed-point semantics), data mining (concept analysis), etc.  
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Generally, for many applications in computer science, the precise time of each event occurrence is usually 
not needed, but what really counts is the precedence relation. In most of these cases, the precedence relation 
holds for events 𝑎and𝑏 if 𝑎ends before𝑏 begins, and thus according to this logic, we can construct a time model 
where each event corresponds to an interval representing its duration. In this case, two events are incomparable if 
their temporal durations overlap. By using the Russell-Wiener axiom, the transitivity of the precedence's axiom 
and the notion of overlapping intervals allow us to infer information regarding the sequence of events. 

 

Let's see an example which illustrates the use of interval orders in computer science. In scheduling modeled by 
precedence constraints, we have several tasks, say, 𝑡1, 𝑡2, … , 𝑡𝑛  which have to be executed by a number of parallel 
processors 𝑝1, 𝑝2, … , 𝑝𝑛 . We are assuming that all processors are identical, and all tasks are known in advance and 
can be executed independently from each other. Each assignment of tasks to processors is called a schedule. The 
sum of the processing times of the tasks, assigned to a processor, is the load of this processor and, the maximum 
load of any processor is the length of the schedule. Our strategy here is an optimal schedule, that is, a schedule of 
minimal length. In the case where the precedence constraint is an interval order, Papadimitriou and Yannakakis 
[16] showed that if tasks are put into a list sorted by non-increasing size of successorsets,2and whenever a 
processor becomes idleit executes the leftmost unscheduled task in the list that is ready for execution, then one 
obtains a schedule of minimal length (see also [20, Page 3]). Finally, if an interval order 𝑅 represents the time 
intervals for a given set of tasks, the breadth (the maximum size of an antichain in R) gives an upper bound on 
how many tasks are running at thesame time. This has applications, for example, in register allocation on a 
computer CPU. 

 

On the other hand, it is commonly known that graphs are a powerful tool for modeling problems that arise in all 
areas of our life. A graph 𝐺 = (𝑉, 𝐸) is called an intersection graph for a non-empty family ℱ of geometric objects if 
there is a one-to-one correspondence between ℱandV such that two geometric objects in ℱhave non-empty 
intersection if and only if their corresponding vertices inV are adjacent. Such a family of geometric objects is called 
an intersection representation of the graph. One of the most important intersection graphs are that of intervals on 
the real line and that of triangles defined by a point on a horizontal line and an interval or a unit interval on 
another horizontal line. Intersection graphs have natural applications in several fields, including bioinformatics 
and involving the physical mapping of DNA and the genome reconstruction. 
 

A partially ordered set or poset, (𝑋, ≺), consists of a set 𝑋 together with an irreflexive and transitive binary 
relation≺ on it. A realizer of a poset 𝑋, ≺  is a family of linear orders on X whose intersection is the binary relation 

𝑅. Szprilrajn [21] first proved that a realizer for a partial order 𝑅 always exists. Dushnik and Miller [3] defined the 
order dimension 𝑑𝑖𝑚(R) of a poset 𝑋, 𝑅 to be the minimum cardinality of a realizer. The concept of order 
dimension plays a role that in many instances is analogous to the chromatic number for graphs. Spinrad [19] 
believes that order dimension is a parameter that in some sense measures the complexity of a partial order. In fact, 
various problems may be easier to solve when restricted to partial orders of small order dimension. There are 
efficient algorithms for determining whether a partial order has at most two-order dimension. In 1982, 
Yannakakis [29] showed that testing if a partial order has order dimension ≤ 𝑘, where 𝑘 ≥ 3, is𝑁𝑃-complete. 
Dimension seems to be a particularly hard 𝑁𝑃-complete problem. This is indicated by the fact that we have no 
heuristics or approximation algorithms to produce realizers of partial orders that have reasonable size (for details 
see [4], [8], [12], [19], [20], [26], [29]). The interval order dimension and semiorder dimension of a poset(𝑋, 𝑅), 
denoted 𝑖𝑑𝑖𝑚(R)and𝑠𝑑𝑖𝑚(R), are defined analogously to the order dimension but with interval orders and 
semiorders instead of linear orders. Since strict linear orders are semiorders and semiorders are interval orders, we 
trivially obtain that order dimension is an upper bound and interval dimension is a lower bound for semiorder 
dimension. The dimension of acyclic binaryrelations R which are the intersection of orders from the same class 
𝒫has been extensively investigated. In contrast, not much is known about dimension of acyclic binary relations 
𝑅 which are the intersection of orders from different classes 𝒫1and 𝒫2. Two main examples in this area are linear-
interval orders (resp. linear-semiorders) 𝑅, i.e., acyclic binary relations where 𝑅 = 𝑅1 ∩ 𝑅2, with 𝑅1 being a linear 
order and 𝑅2 being an interval order (resp. semiorder). The linear-interval (resp. linear-semiorder) dimension is 
defined analogously to the order dimension but with linear-interval orders (resp. linear-semiorders) instead of 
linear orders (see [13], [17], [22] and [23]). 
 

In this paper, we give three main results on: (i) the (linear-) interval order and (linear-) semiorder extensions of a 
binary relation; (ii) the existence of a realizer of a (linear-) interval order and (linear) semiorder of a binary relation; 
and (iii) the characterization of the (linear-) interval order and (linear-) semiorder dimension of a binary relation.  

                                                           
2
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These results give an analogue of the: (𝔦) Szpilran extension theory for posets[21], (𝔦𝔦) Dushnik and Miller 

[3] measure of poset complexity (order dimension) and (𝔦𝔦𝔦) Hiraguchi [10], Ore [15] and Milner and Pouzet [14] 
characterization of order dimension for posets, in the hybrid order case. 
 
 

2 Notations and definitions 
 

Let 𝑋 be a non-empty universal set of alternatives and 𝑅 ⊆ 𝑋 × 𝑋 be a binary relation on 𝑋. We sometimes 
abbreviate  𝑥, 𝑦 ∈ 𝑅 as𝑥𝑅𝑦. An abstract system [27] is a pair (𝑋, 𝑅), where 𝑋 is a set and 𝑅 is a binary relation such 
that given 𝑥, 𝑦 ∈ 𝑋, 𝑥𝑅𝑦 means that 𝑥 dominates𝑦. We say that 𝑅 on 𝑋 is (i) reflexive if for each 𝑥 ∈ 𝑋, (𝑥, 𝑥) ∈ 𝑅; (ii) 
irreflexive if we never have (𝑥, 𝑥) ∈ 𝑅; (iii) asymmetric if for all 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝑅 ⇒ (𝑦, 𝑥) ∉ 𝑅; (iv) transitive if for all 
𝑥, 𝑦, 𝑧 ∈ 𝑋, [(𝑥, 𝑧) ∈ 𝑅 and(𝑧, 𝑦) ∈ 𝑅] ⇒ (𝑥, 𝑦) ∈ 𝑅; (v) antisymmetric if for each 𝑥, 𝑦 ∈ 𝑋, [(𝑥, 𝑦) ∈ 𝑅and(𝑦, 𝑥) ∈ 𝑅] ⇒ 𝑥 = 𝑦; 
(vi) total if for each 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦wehave𝑥𝑅𝑦 or 𝑦𝑅𝑥. Let ℬ be the set of binary relations on𝑋. The diagonal 
relation𝛥on𝑋 is defined by 𝛥 = {(𝑥, 𝑥) ∣ 𝑥 ∈ 𝑋}. A unary operator𝜌 is a mapping from ℬtoℬ. Thus, given a binary 
relation 𝑅, 𝜌(𝑅) ∈ ℬ is a binary relation. We first define the basic unary operator for binary relations. Given a binary 
relation 𝑅, the asymmetric part𝑃(𝑅) of 𝑅 is defined as follows: 

𝑃(𝑅) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∣ (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑥) ∉ 𝑅}. 

A closure operator is a unary operator 𝜑 fromℬ toℬ that satisfies the following three properties: for all 𝑅, 𝑅′ ∈

ℬ,(𝔞) R = φ(R)(extensiveness); (𝔟)𝑅 ⊆ 𝑅′ ⇒ 𝜑 𝑅 ⊆ 𝜑 𝑅′ (monotonicity) and (c) 𝜑(𝜑(𝑅)) = 𝜑(𝑅) (idempotence). For a 
particular property 𝒫, a closure operation of 𝑅is defined to be the smallest relation 𝑅0 that contains 𝑅 and has the 
desired property𝒫. Now, we provide two examples of closure operations. First, the transitive closure of a relation 𝑅is 
denoted by 𝑅 , that is, for all 𝑥, 𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈ 𝑅  if there exists𝑚 ∈ ℕ and 𝑧0 , … , 𝑧𝑚 ∈ 𝑋 such that 𝑥 = 𝑧0 ,  𝑧𝑘 , 𝑧𝑘+1 ∈ 𝑅for 
all𝑘 ∈ {0, … , 𝑚 − 1}and𝑧𝑚 = 𝑦. Clearly, 𝑅  is transitive and because the case 𝑚 = 1is included, it follows that 𝑅 ⊆

𝑅 .Secondly, the reflexive closure of 𝑅 is defined as follows: 
𝑟𝑐(𝑅) = 𝑅 ∪ 𝛥. 

The following combinations of properties are considered in the next theorems. A binary relation 𝑅on𝑋 is: (1) a 
strict partial order if 𝑅 is irreflexive and transitive; (2) a partial order if 𝑅 is reflexive, transitive and antisymmetric; (3) 
an interval order if 𝑅 is a strict partial order which satisfies the Russell-Wiener axiom; (4) a strong interval order (see [2, 

Definition 3]) if𝑅 is the reflexive closure of an interval order (𝑅 = 𝑟𝑐(𝑄) where 𝑄 is an interval order); (5) a strict 
linear order if𝑅 is a total strict partial order and (6) a linear order if 𝑅 is a total partial order. A subset 𝑌 ⊆ 𝑋 is an 𝑅-
cycle if, for all 𝑥, 𝑦 ∈ 𝑌, we have (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑥) ∈ 𝑅 . We say that R is acyclic if there does not exist an𝑅-cycle. A 
binary relation 𝑅∗ is an extension of a binary relation 𝑅 if and only if 𝑅 ⊆ 𝑅∗and 𝑃(𝑅) ⊆ 𝑃 𝑅∗ . The (interval) order 
dimension of a partially ordered set (𝑋, ≺) is the least𝜆 such that there are𝜆 (interval order) linear order extensions of 
≺whose intersection is≺. 
 

Since a linear order is a special case of an interval order and of a semiorder respectively, we conclude that a linear 
order extension of a binary relation 𝑅 is also an interval order as well as a semiorder extension of 𝑅. The converse 
is not true. In the simple example which follows this can be confirmed. 
 

Example 2.1. Let𝑋 =  𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 be a set and let𝑅1 =   𝑥1 , 𝑥2 ,  𝑥3, 𝑥4  and𝑅2 =   𝑥1 , 𝑥2 ,  𝑥1 , 𝑥3 ,  𝑥2 , 𝑥3   be two 
relations onX. Then, 𝑅 1 =   𝑥1 , 𝑥2 ,  𝑥3 , 𝑥4 ,  𝑥1 , 𝑥4  is an interval order extension of𝑅which is not a linear order 
and𝑅 2 =   𝑥1 , 𝑥2 ,  𝑥1 , 𝑥3 ,  𝑥2, 𝑥3 ,  𝑥4 , 𝑥3  is a semiorder extension ofRwhich is not a linear order as well. 
 
Cerioli, Oliveira and Szwarcfiter in [2] gave a common generalization of interval order dimension and (linear) 
order dimension of partial order ≾. We extend this generalization in acyclic binary relations as follows: An acyclic 
binary relation 𝑅 is called a linear-interval order if there exist a linear order 𝐿 and an interval order 𝑄 such that 
𝑅 = 𝐿 ∩ 𝑄. In this direction, we call an acyclic binary relation a linear-semiorder if its transitive closure is the 
intersection of a linear order and a semiorder (see [24]). Suppose𝒮 =  𝑆𝑖 ∣ 𝑖 ∈ 𝐼  be a family of geometric objects. A 
graph 𝐺 = (𝑉, 𝐸) is an intersection graph if we can associate 𝒮 to𝐺such that each 𝑆𝑖 corresponds to a vertex in 𝑉 and 
(𝑥, 𝑦) ∈ 𝐸 if and only if the 𝑆𝑖 corresponding to 𝑥 and 𝑦 have non-empty intersection. That is, there is a one-to-one 
correspondence between 𝒮and𝐺such that two sets in𝒮 have non-empty intersection if and only if their 
corresponding vertices in 𝐺 are adjacent. Intersection graphs are vital from both theoretical and practical points of 
view.An interval graph is the intersection graph of a family of intervals of the real line, called an interval model. 
Let 𝐿1and𝐿2 be two distinct parallel lines. A permutation graph is the intersection graph of a family of line segments 
whose endpoints lie on two parallel lines 𝐿1and𝐿2. A trapezoid graph is the intersection graph of a family of 
trapezoids 𝐴𝐵𝐶𝐷, such that 𝐴𝐵is on𝐿1and 𝐶𝐷on𝐿2.A point-interval graph (or𝑃𝐼 graph) is the intersection graph of a 
family of triangles𝐴𝐵𝐶, such that𝐴 is on 𝐿1and𝐵𝐶 is on 𝐿2.Figure 1 illustrates aPI graphwhere 𝐿1 is represented by 
the top line and 𝐿2 by the bottom line. Point-interval graphs generalize both permutation and interval graphs and 
lie between permutation and trapezoid graphs. 
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(a) (b)  

 
Figure 1: (a) A simple-triangle graph of G. (b) An intersection representation of G. 

 
In fact, an acyclic binary relation𝑅 is called a linear-interval order if for each 𝑥 ∈ 𝑋 there exists a triangle 𝑇(𝑥) such that 

𝑥𝑅 𝑦 if and only if 𝑇(𝑥) lies completely to the left of 𝑇(𝑦). 
 

In fact, the ordering of the apices of the triangles gives the linear order 𝐿, and the bases of the triangles give an 
interval representation of the interval order 𝐼. Let 𝒦 be a family of geometric objects on 𝑋 and let 𝐿1and𝐿2 be two 
horizontal lines in the𝑥𝑦-plane with 𝐿1above 𝐿2. Generally speaking, a binary relation 𝑅on a set 𝑋 is 𝒦-order if for 
each element 𝑥 ∈ 𝑋, there is a geometric object 𝒦 between 𝐿1 and 𝐿2 so that for any two elements 𝑥, 𝑦 ∈ 𝑋, we have 
x ≺ yin 𝑅 if and only if𝒦(𝑥) lies completely to the left of 𝒦(𝑦). The set {𝒦(𝑥) ∣ 𝑥 ∈ 𝑋}is called a𝒦 representation of 
𝑅. Linear-interval orders have a triangle representation and Linear-semiorders have a unit triangle representation. 
 

We say that 𝒭 is a(𝑝, 𝑞)-linear-interval realizerof 𝑅, if𝒭 is an interval realizer of 𝑅 (𝑅 = ⋂𝒭) with 𝑝 elements and 
precisely 𝑞 of them are non-linear. In this case we say that 𝒭 (𝑝, 𝑞)-realize 𝑅. We define (𝑝, 𝑞) ≤  𝑝′ , 𝑞′  if(𝑝, 𝑞) is 
lexicographically smaller than or equal to  𝑝′ , 𝑞′ . A linear-interval dimension of an order𝑅, denoted by𝑙𝑖𝑑𝑖𝑚⁡(𝑅), is the 
lexicographically smallest ordered pair (𝑝, 𝑞) such that there exists a(𝑝, 𝑞)-linear-interval realizer of 𝑅 (see [2, Page 
113]). Similarly, we define the notion (𝑝, 𝑞)-linear-semiorder realizer of 𝑅. 

 

3 Main result 
 

Szpilrajn's extension theorem shows that any irreflexive and transitive binary relation has an irreflexive, transitive 
and total (strict linear order) extension (see Szpilrajn [21]). A general result of Szpilrajns extension theorem is the 
following corollary. 
 
Corollary 3.1. A binary relation 𝑅on a set 𝑋 has a strict linear order extension if and only if 𝑅 is an acyclic binary 
relation. 

Proof. To prove the necessity of the corollary, we assume that 𝑅 is acyclic. Then, 𝑅  is irreflexive and 
transitive. By Szpilrajns extension theorem 𝑅  has a strict linear order extension 𝑅∗. Since 𝑅 ⊆ 𝑅  we have that 𝑅∗ is a 
strict linear order extension of 𝑅. To prove the sufficiency, let us assume that𝑅 has a strict linear order extension 
𝑄∗.Then, 𝑅 is acyclic. Indeed, suppose to the contrary that there exist 𝑥, 𝑦 ∈ 𝑋such that 𝑥𝑅 𝑦and𝑦𝑅 𝑥. It follows that 
𝑥𝑄∗𝑥, a contradiction to the irreflexivity of 𝑄∗. The last conclusion completes the proof. 

 

Szpilrajn's result remains true if asymmetry is replaced with reflexivity and antisymmetric (see [1, Page 64], 
[9]), that is, every reflexive, transitive and antisymmetric binary relation has a linear order extension. We generalize 
this result as follows: 
 
Definition 3.1. A binary relation𝑅 on a set X is transitively antisymmetric if and only if 𝑅  is antisymmetric. 
 
Proposition 3.2. A binary relation 𝑅 on a set 𝑋 has a linear order extension if and only if𝑅 istransitively 
antisymmetric. 
Proof. To prove the necessity of the proposition, we assume that 𝑅 is transitively antisymmetric. Then, 𝑅  is 
transitive and antisymmetric. Then, by Arrow [1, Page 64] and Hansson [9], 𝑅 has a linear order extension. 
Therefore,𝑅 has a linear order extension. To prove the sufficiency, suppose that 𝑅 has a linear order extension. 
If𝑅 is not transitively antisymmetric, then there are 𝑥, 𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝑅 , (𝑦, 𝑥) ∈ 𝑅 and 𝑥 ≠ 𝑦. But then, 
(𝑥, 𝑦) ∈ 𝑄, (𝑦, 𝑥) ∈ 𝑄and𝑥 ≠ 𝑦 which is impossible by the antisymmetry of 𝑄.The last contradiction shows that𝑅 is 
transitively antisymmetric. 
To continue the study on the interval order dimension let us make the following assumption. 
Negative interval order assumption. Let a binary relation 𝑅on𝑋 be given. Then, there exists 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑋 such that 
(𝑥, 𝑎) ∈ 𝑅, (𝑏, 𝑦) ∈ 𝑅, (𝑏, 𝑎) ∉ 𝑅 and(𝑥, 𝑦) ∉ 𝑅hold. The set 
 

𝔇𝑅 =  ((𝑥, 𝑦), (𝑎, 𝑏)) ∈ 𝑋2 × 𝑋2 ∣ (𝑥, 𝑎) ∈ 𝑅, (𝑏, 𝑦) ∈ 𝑅, (𝑏, 𝑎) ∉ 𝑅  and (𝑥, 𝑦) ∉ 𝑅}  
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is called the negative interval order assumption set with respect to𝑅. 
Negative semiorder assumption. Let a binary relation 𝑅on𝑋 be given. Then, there exists 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 such that (𝑥, 𝑦) ∈

𝑅, (𝑦, 𝑧) ∈ 𝑅, (𝑥, 𝑤) ∉ 𝑅 and (𝑤, 𝑦) ∉ 𝑅 hold. 
 
Remark 3.3. If a binary relation𝑅 is assumed to satisfy the negative interval order assumption generalizes the 2 +

2rule and if it is assumed to satisfy the semiorder assumption is equivalent to fulfil the 3 + 1 rule. In this paper, we 
use the first notation which is more convenient for presentation of proofs. 
 
 
 
 
 
 
(a)(b) 
 
Figure 2:𝑅 satisfies the negative interval order assumption (or the 2 + 2 rule) iff a restriction of it is isomorphic to (a) and it satisfies the 

negative semiorder assumption (or 3 + 1 rule) iff a restriction of it is isomorphic to either (a) or (b). 
 

Lemma 3.4. Let𝑅be an acyclic binary relation on a set𝑋, which does not satisfy the negative interval order 
assumption. Then,𝑅 is an interval order extension of𝑅(not necessarily strict linear order). 

Proof. By definition,𝑅 ⊆ 𝑅 and𝑅 is transitive. Since 𝑅is acyclic, we also seethat𝑅  is irreflexive. To complete the proof, 
weonly need to verify that𝑅 satisfies the Russell-Wiener axiom. In fact, since𝑅does not satisfy thassumption of the 
negative interval order, we are led to conclude that for all𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑋, which satisfy𝑥𝑅𝑎, 𝑏𝑅𝑦and(𝑏, 𝑎) ∉ 𝑅 ,we 

have(𝑥, 𝑦) ∈ 𝑅. Let now𝑧, 𝑤, 𝑐, 𝑑 ∈ 𝑋such that𝑧𝑅 𝑐, 𝑑𝑅 𝑤and(𝑑, 𝑐) ∉ 𝑅 .Then, there exist natural numbers𝜇, 𝜈and 
alternatives𝑠1 , 𝑠2 , … , 𝑠𝜇 , 𝑡1, 𝑡2, … , 𝑡𝜈such that 

𝑧𝑅𝑠1𝑅𝑠2 …𝑅𝑠𝜇𝑅𝑐 and 𝑑𝑅𝑡1𝑅𝑡2 …𝑅𝑡𝜈𝑅𝑤.  

But then,𝑠𝜇𝑅𝑐, 𝑑𝑅𝑡1and(𝑑, 𝑐) ∉ 𝑅 imply that 𝑠𝜇 , 𝑡1 ∈ 𝑅.It follows that(𝑧, 𝑤) ∈ 𝑅 .Hence,𝑅 is an interval order extension 

of𝑅. 

 

Theorem 3.5.A binary relation𝑅on a set 𝑋 has an interval order extension (not necessarily a strict linear order) if 
and only if𝑅is acyclic. 
Proof. Let us prove the necessity of the theorem. We assume that 𝑅 is an acyclic binary relation defined in a set𝑋. If 
𝑅 is an interval order(if𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑋such that𝑥𝑅𝑎, 𝑏𝑅𝑦, (𝑏, 𝑎) ∉ 𝑅 = 𝑅 , then (𝑥, 𝑦) ∈ 𝑅), then there is nothing to 
prove.Otherwise,𝔇𝑅 ≠ ∅. That is, there exists𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑋such that𝑥𝑅𝑎, 𝑏𝑅𝑦, (𝑏, 𝑎) ∉ 𝑅 and(𝑥, 𝑦) ∉ 𝑅.We put 

𝑅′ = 𝑅 ∪ {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∣ ∃𝑎, 𝑏 ∈ 𝑋 such that 𝑥𝑅𝑎, 𝑏𝑅𝑦 and (𝑏, 𝑎) ∉ 𝑅 }. 

Clearly,𝑅′ is irreflexive and𝑅 ⊂ 𝑅′ .To verify that𝑅′ is acyclic, take any𝑧 ∈ 𝑋and suppose that(𝑧, 𝑧) ∈ 𝑅 . Then, there 

exists a natural number m and alternatives𝑥1 , 𝑥2, … , 𝑥𝑚such that 
𝑧 = 𝑥1𝑅

′𝑥2 …𝑅′𝑥𝑚−1𝑅
′𝑥𝑚 = 𝑧. 

Since𝑅is acyclic, there is at least one𝑘 ∈ {1, … , 𝑚 − 1}such that 𝑥𝑘 , 𝑥𝑘+1 = (𝑥, 𝑦)with (𝑥, 𝑦) ∈ 𝑅′ ∖ 𝑅. Let 𝑥𝑘 ∗be the first 
occurrence of𝑥and let𝑥𝑙∗be the last occurrence of𝑦. Clearly, for all 𝑘 ∈ {1, … , 𝑚 − 1}, if  𝑥𝑘 , 𝑥𝑘+1 ≠ (𝑥, 𝑦),then 
 𝑥𝑘 , 𝑥𝑘+1 ∈ 𝑅. Then, 

𝑦 = 𝑥𝑙∗𝑅𝑥𝑙∗+1 …𝑅𝑧𝑅𝑥1 …𝑅𝑥𝑘 ∗ = 𝑥. 

It follows that(𝑦, 𝑥) ∈ 𝑅 which jointly with(𝑥, 𝑎) ∈ 𝑅and(𝑏, 𝑦) ∈ 𝑅implies that(𝑏, 𝑎) ∈ 𝑅 , causing an absurdity. 
Therefore,𝑅′ is acyclic. On the other hand, if𝑅′does not satisfies the negative interval order assumption, then 
Lemma 3.4 implies that𝑅 is an interval order extension of𝑅, which ends the proof of the necessity of the theorem. 
Otherwise, we proceed by assuming that 𝑅′  satisfies the negative interval order assumption. 
Now, let us 

ℰ = {𝑄 ⊆ 𝑋 × 𝑋 ∣ 𝑄is an acyclic extension of𝑅 which satisfies the negative interval order assumption}. 

 

We have𝑅′ ∈ ℰ, so this class is not nonempty. Let𝒞 =  𝑄𝜃 𝜃∈𝛩be a chain inℰand let𝑄 = ⋃𝜃∈𝛩  𝑄𝜃 .Then, 𝑄 ∈ ℰ. 

To prove it, we first show that𝑄 is acyclic (resp. irreflexive). Take(𝑥, 𝑥) ∈ 𝑄   (resp. (𝑥, 𝑥) ∈ 𝑄 )for some𝑥 ∈ 𝑋. Then, 
since 𝒞 is a chain, there exists an𝑄𝜃∗ ∈ 𝒞, 𝜃∗ ∈ 𝛩such that(𝑥, 𝑥) ∈ 𝑄𝜃∗      (resp.(𝑥, 𝑥) ∈ 𝑄𝜃∗).This is impossible due to the 
acyclicity (irreflexivity) of 𝑄𝜃∗. Therefore, 𝑄  is irreflexive and acyclic. On the other hand, we assume that𝑄 satisfies 

the negative interval order assumption, because otherwise Lemma 3.4 implies that𝑄   is an extension of the interval 
order of 𝑅, which ends the proof of the necessity of the theorem. Since𝑅 ⊂ 𝑄 we have that𝑄 ∈ ℰ. Therefore, any 
chain in ℰ has an upper bound inℰ (with respect to set inclusion). By Zorn's lemma, there is a maximal element 
𝑄∗inℰ. We prove that 𝑄∗    is an interval order extension of𝑅. Clearly, 𝑄∗    is an irreflexive and transitive extension of 
𝑅. It remains to prove that 𝑄∗    satisfies the Russell-Wiener axiom.  
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We proceed by way of contradiction. Suppose there are𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑋 such that (𝑥, 𝑎) ∈ 𝑄∗   , (𝑏, 𝑦) ∈ 𝑄∗   , (𝑏, 𝑎) ∉

𝑄∗   and (𝑥, 𝑦) ∉ 𝑄∗   . Then, 𝑄∗   ⊃ 𝑄∗ is an acyclic extension of 𝑅 which satisfies the negative interval order assumption, 
a contradiction to the maximal character of 𝑄∗. Clearly, in any case of proof, the extension of the interval𝑅 is not 
required to be of linear order. Thus, the last contradiction completes the necessity of the theorem. 

 
To prove the sufficiency, let us assume that𝑅 has a not necessarily linear interval order extension 𝑄∗.Then, 

𝑅 is acyclic. Indeed, suppose to the contrary that there exist 𝑥 ∈ 𝑋, a natural number m and alternatives 𝑥1 , 𝑥2 , … , 𝑥𝑚  
such that 

𝑥𝑅𝑥1𝑅𝑥2 …𝑅𝑥𝑚𝑅𝑥.  

 
Since 𝑄∗ is transitive and 𝑅 ⊆ 𝑄∗,we have𝑥𝑄∗𝑥, a contradiction to irreflexivity of 𝑄∗. The last conclusion 

completes the proof.  
 

Corollary 3.6. A binary relation𝑅 on a set 𝑋 has a strong interval order extension ((not necessarily a linear order) if 

and only if 𝑅 is transitively antisymmetric. 
Proof. To prove the necessity of the corollary, we assume that 𝑅 is transitively antisymmetric. Then, 𝑅 ∖ 𝛥 is acyclic. 
By Theorem 3.5, 𝑅 ∖ 𝛥 has an interval order extension 𝑅∗. Then, we have 

𝑅 ⊆ 𝑅 = (𝑅 ∖ 𝛥) ∪ (𝑅 ∩ 𝛥) ⊆ 𝑅∗ ∪ (𝑅 ∩ 𝛥) ⊆ 𝑅∗ ∪ 𝛥. 

Therefore, 𝑄 = 𝑟𝑐 𝑅∗ = 𝑅∗ ∪ 𝛥 is a strong interval order extension of 𝑅. To prove the sufficiency, let us assume 
that 𝑅 has a strong interval order extension 𝑄 .Suppose on the contrary, that there are 𝑥, 𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝑅 , 

(𝑦, 𝑥) ∈ 𝑅  and 𝑥 ≠ 𝑦. It follows that (𝑥, 𝑦) ∈ 𝑄, (𝑦, 𝑥) ∈ Q and 𝑥 ≠ 𝑦 which is impossible by the asymmetry of𝑄 ∖ 𝛥. 

The last contradiction completes the proof. 
 
Theorem 3.7. A binary relation 𝑅 in a set 𝑋 is a linear interval order if and only if 𝑅 is acyclic. 
Proof. To prove the necessity of the theorem, let us suppose that 𝑅 is an acyclic binary relation defined on a set 𝑋. 
By Theorem 3.5 there exists an interval order extension 𝑄 of 𝑅 (𝑄 is not necessarily a strict linear order). Then, 
𝑅 ⊆ 𝑄 which implies that 𝑄 is an interval order extension of𝑅 . 
We put 

𝑅∗ = 𝑅 ∪ {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 ∣ (𝑦, 𝑥) ∈ 𝑄 ∖ 𝑅 }. 
 

Since 𝑅 is acyclic and 𝑄 is irreflexive, we have 𝑅∗ is irreflexive. If 𝑄 = 𝑅 , then 𝑅∗ = 𝑅 . By the Szpilrajn theorem, 𝑅  
has a strict linear-order extension 𝐿. It follows that 𝑅 = 𝑄 ∩ 𝐿 which implies that 𝑅 is a linear-interval order. Now 
suppose 𝑄 ∖ 𝑅 ≠ ∅. We now prove that 𝑅∗ is acyclic and thus is an acyclic extension of 𝑅 . Indeed, suppose to the 
contrary that there are alternatives 𝜈, 𝑧0 , 𝑧1 , 𝑧2, … , 𝑧𝑚 ∈ 𝑋 such that 

𝜈 = 𝑧0𝑅
∗𝑧1𝑅

∗𝑧2 …𝑅∗𝑧𝑚 = 𝜈. 

Since𝑅 is acyclic, there is at least one 𝜅 ∈  0,1, … , 𝑚 − 1 such that  𝑧𝜅 , 𝑧𝜅+1 = (𝑥, 𝑦). Let 𝑧𝜅∗ be the first occurrence of 
𝑥 and let 𝑧𝜆∗ be the last occurrence of 𝑦. Then, 

𝑦 = 𝑧𝜆∗𝑅𝑧𝜆∗+1 …𝑅𝑧𝑚 = 𝜈 = 𝑧0𝑅𝑧1𝑅 …𝑅𝑧𝜅∗ = 𝑥. 

It follows that (𝑦, 𝑥) ∈ 𝑅 , a contradiction to (𝑦, 𝑥) ∈ 𝑄 ∖ 𝑅 . 
Suppose that 𝒭 =  𝑅 𝑖 ∣ 𝑖 ∈ 𝐼  denotes the set of acyclic extensions of 𝑅  such that (𝑥, 𝑦) ∈ 𝑅 𝑖 ∖ 𝑅  if and only if 
(𝑦, 𝑥) ∈ 𝑄 ∖ 𝑅 . Since 𝑅∗ ∈ 𝒭  we have that 𝒭 ≠ ∅. Let𝒞 =  𝐶𝑖 𝑖∈𝐼 be a chain in 𝒭 , and let 𝐶 = ⋃𝑖∈𝐼  𝐶𝑖. We prove that 
𝐶 ∈ 𝒭 . To prove that𝐶  is acyclic suppose to the contrary that there exists 𝜇, 𝑠0, 𝑠1 , 𝑠2 , … , 𝑠𝑛 ∈ 𝑋 such that 

𝜇 = 𝑠0𝐶 𝑠1𝐶 𝑠2 …𝐶 𝑠𝑛 = 𝜇. 

Since𝒞is a chain, there exists 𝑖∗ ∈ 𝐼such that 
𝜇 = 𝑠0𝐶𝑖∗𝑠1𝐶𝑖∗𝑠2 …𝐶𝑖∗𝑠𝑛 = 𝜇, 

contradicting the acyclicity of 𝐶𝑖∗. On the other hand, it is easy to check that (𝑥, 𝑦) ∈ 𝐶 ∖ 𝑅  implies (𝑦, 𝑥) ∈ 𝑄 ∖ 𝑅 . 

By Zorn's lemma 𝒭  possesses an element, say 𝑅 , that is maximal with respect to set inclusion. We have two cases 
to consider: 𝑅  is total or not. If 𝑅  is total, then 𝑅  is a strict linear order extension of 𝑅 . Then, 𝑅 = 𝑄 ∩ 𝑅 . Indeed, 
since 𝑅 ⊆ 𝑄 ∩ 𝑅 , one needs only to prove that 𝑄 ∩ 𝑅 ⊆ 𝑅 . Let to the contrary be (𝑥, 𝑦) ∈ 𝑄 ∩ 𝑅 and (𝑥, 𝑦) ∉ 𝑅 . The 
(𝑥, 𝑦) ∈ 𝑄 ∖ 𝑅  which implies that (𝑦, 𝑥) ∈ 𝑅 , a contrsdiction to asymmetry of 𝑅  (irreflexive and transitive). Therefore, 
𝑅 = 𝑄 ∩ 𝑅 .If 𝑅  is not total, then there exists𝑥, 𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∉ 𝑅 and(𝑦, 𝑥) ∉ 𝑅 . It follows that (𝑥, 𝑦) ∉ 𝑅 and 
(𝑦, 𝑥) ∉ 𝑅 . But then, (𝑥, 𝑦) ∉ 𝑄and (𝑦, 𝑥) ∉ 𝑄, because otherwise (𝑥, 𝑦) ∉ 𝑄 ∖ 𝑅  or (𝑦, 𝑥) ∉ 𝑄 ∖ 𝑅  which implies that 
(𝑦, 𝑥) ∉ 𝑅 or (𝑥, 𝑦) ∉ 𝑅  which is impossible. Since𝑅  and transitive, by the Szpilrajn theorem there exists a strict linear 

order extension𝑅   of 𝑅 . Since (𝑅  ∖ 𝑅 ) ∩ 𝑄 = ∅ we conclude that 𝑄 ∩ 𝑅  = 𝑅 .The last conclusion shows that 𝑅 is a 
linear-interval binary relation.The converse is similar to the proof of the converse of Theorem 3.5. 
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Theorem 3.8. A binary relation 𝑅 on a set𝑋 has a semiorder extension if and only if 𝑅 is acyclic. 
Proof. Let𝑅 be an acyclic binary relation on𝑋. By Theorem 3.5 has an interval order extension 𝑄of 𝑅. Put 

𝑄∗ = 𝑄 ∪ {(𝑥, 𝑤) ∈ 𝑋 × 𝑋 ∖ 𝛥 ∣  there exist 𝑦, 𝑧 ∈ 𝑋 such that 
(𝑥, 𝑦) ∈ 𝑄, (𝑦, 𝑧) ∈ 𝑄, (𝑥, 𝑤) ∉ 𝑄 and (𝑤, 𝑧) ∉ 𝑄} = 𝑄 ∪ 𝑇.

 

Clearly,𝑄∗ is irreflexive. We prove that 𝑄∗ is transitive. Indeed, let 𝑎, 𝑏, 𝑐 ∈ 𝑋 such that (𝑎, 𝑏) ∈ 𝑄∗and (𝑐, 𝑑) ∈ 𝑄∗. 
Then, we have four cases to consider: 
Case 𝟏𝛂. 𝑎, 𝑏 ∈ 𝑄 and(𝑏, 𝑐) ∈ 𝑄.Then, (𝑎, 𝑐) ∈ 𝑄 ⊆ 𝑄∗. 

Case  𝟐𝛂. 𝑎, 𝑏 ∈ 𝑄  and(𝑏, 𝑐) ∈ 𝑇.Therefore, 𝑎, 𝑏 ∈ 𝑄 and there exists𝜅, 𝑚, 𝜆 ∈ Xsuch that(𝑏, 𝜅) ∈ 𝑄, (𝜅, 𝜆) ∈

𝑄, (𝑏, 𝑐) ∉ 𝑄and(𝑐, 𝜆) ∉ 𝑄. From 𝑎, 𝑏 ∈ 𝑄 and(𝑏, 𝜅) ∈ Qwe have that(𝑎, 𝜅) ∈ 𝑄. If(𝑎, 𝑐) ∈ 𝑄 ⊆ 𝑄∗we have nothing 
toprove. We suppose that(𝑎, 𝑐) ∉ 𝑄. Then, from(𝑎, 𝜅) ∈ 𝑄, (𝜅, 𝜆) ∈ 𝑄, (𝑎, 𝑐) ∉ 𝑄and(𝑐, 𝜆) ∉ Qwe conclude(𝑎, 𝑐) ∈ 𝑄∗. 

Case 𝟑𝛂. 𝑎, 𝑏 ∈ 𝑇and(𝑏, 𝑐) ∈ 𝑄.In this case, we have 𝑏, 𝑐 ∈ 𝑄 and there exists𝜅, 𝜆 ∈ 𝑋 such that(𝑎, 𝜅) ∈ 𝑄, (𝜅, 𝜆) ∈

𝑄, (𝑎, 𝑏) ∉ 𝑄and(𝑏, 𝜆) ∉ 𝑄. Since 𝜅, 𝜆 ∈ 𝑄,  𝑏, 𝑐 ∈ 𝑄 and 𝑏, 𝜆 ∉ 𝑄 we conclude that 𝜅, 𝑐 ∈ 𝑄 which jointly to 𝑎, 𝜅 ∈
𝑄  implies that(𝑎, 𝑐) ∈ 𝑄 ⊆ 𝑄∗. 

Case𝟒𝛂. 𝑎, 𝑏 ∈ 𝑇and(𝑏, 𝑐) ∈ 𝑇. In this case, there are𝜅, 𝜆, 𝜈, 𝜇 ∈ 𝑋such that 𝑎, 𝜅 ∈ 𝑄,  𝜅, 𝜆 ∈ 𝑄,  𝑎, 𝑏 ∉ 𝑄,  𝑏, 𝜆 ∉

𝑄 and(𝑏, 𝜇) ∈ 𝑄, (𝜇, 𝜈) ∈ 𝑄,  𝑏, 𝑐 ∉ 𝑄 and(𝑐, 𝜈) ∉ 𝑄.If(𝑎, 𝑐) ∈ 𝑄 ⊆ 𝑄∗, then we have nothing to prove. Suppose 
that(𝑎, 𝑐) ∉ 𝑄.If(𝑐, 𝜆) ∉ 𝑄, then from(𝑎, 𝜅) ∈ 𝑄, (𝜅, 𝜆) ∈ 𝑄 and 𝑎, 𝑐 ∉ 𝑄 we conclude that(𝑎, 𝑐) ∈ 𝑇 ⊆ 𝑄∗. Otherwise, 
if 𝑐, 𝜆 ∈ 𝑄, then we have two subcases to consider when 𝑎, 𝜇 ∈ 𝑄 or not.If(𝑎, 𝜇) ∈ 𝑄, then from 𝑚, 𝜈 ∈ 𝑄,  𝑎, 𝑐 ∉ 𝑄  

and 𝑐, 𝜈 ∉ 𝑄 we have (𝑎, 𝑐) ∈ 𝑇 ⊆ 𝑄∗. On the other hand, if(𝑎, 𝜇) ∉ 𝑄,then 𝑏, 𝜇 ∈ 𝑄,  𝑎, 𝜅 ∈ 𝑄 implies that(𝑏, 𝜅) ∈

Qwhich jointly to 𝜅, 𝜆 ∈ 𝑄 implies that 𝑏, 𝜆 ∈ 𝑄 which is impossible. Therefore, in all possible cases(𝑎, 𝑐) ∈ 𝑄∗which 
implies that𝑄∗is transitive. 
To prove that 𝑄∗ is an interval order we have four cases to consider. 
Case 𝟏𝛃.  𝑎, 𝑏 ∈ 𝑄,  𝑐, 𝑑 ∈ 𝑄and (𝑐, 𝑏) ∉ 𝑄∗ ⊇ 𝑄. Since 𝑄 is an interval order, in this case It is clear that (𝑎, 𝑑) ∈ 𝑄 ⊆

𝑄∗. 

Case 𝟐𝛃. 𝑎, 𝑏 ∈ 𝑄,  𝑐, 𝑑 ∈ 𝑇 and(𝑐, 𝑏) ∉ 𝑄∗ ⊇ 𝑄. In this case, there are𝜅, 𝜆 ∈ 𝑋 such that 𝑐, 𝜅 ∈ 𝑄,  𝜅, 𝜆 ∈ 𝑄,  𝑐, 𝑑 ∉

𝑄 and(𝑑, 𝜆) ∉ 𝑄. Then, from 𝑎, 𝑏 ∈ 𝑄,  𝑐, 𝑘 ∈ 𝑄 and 𝑐, 𝑏 ∉ 𝑄 we conclude that(𝑎, 𝑘) ∈ 𝑄.If (𝑎, 𝑑) ∈ 𝑄 ⊆ 𝑄∗,then we 
have nothing to prove.If(𝑎, 𝑑) ∉ 𝑄, then from 𝑎, 𝜅 ∈ 𝑄,  𝜅, 𝜆 ∈ 𝑄,  𝑎, 𝑑 ∉ 𝑄 and 𝑑, 𝜆 ∉ 𝑄 we have that(𝑎, 𝑑) ∈ 𝑇 ⊆ 𝑄∗. 
Case 𝟑𝛃.(𝑎, 𝑏) ∈ 𝑇, (𝑐, 𝑑) ∈ 𝑄and(𝑐, 𝑏) ∉ 𝑄∗ ⊇ 𝑄.In this case, we have(𝑐, 𝑑) ∈ Q and there exists𝜅, 𝜆 ∈ 𝑋 such that(𝑎, 𝜅) ∈

𝑄, (𝜅, 𝜆) ∈ 𝑄, (𝑎, 𝑏) ∉ 𝑄,  𝑏, 𝜆 ∉ 𝑄 and(𝑐, 𝑏) ∉ 𝑄∗ ⊇ 𝑄.If(𝑎, 𝑑) ∈ 𝑄 ⊆ 𝑄∗, then we have nothing to prove. Let(𝑎, 𝑑) ∉ 𝑄. 
If(𝑑, 𝜆) ∉ 𝑄,then 𝑎, 𝜅 ∈ 𝑄,  𝜅, 𝜆 ∈ 𝑄 implies(𝑎, 𝑑) ∈ 𝑇 ⊆ 𝑄∗. Otherwise, (𝑑, 𝜆) ∈ Q which jointly to(𝑐, 𝑑) ∈ 𝑄, (𝑐, 𝑏) ∉

𝑄, (𝑏, 𝜆) ∉ 𝑄implythat(𝑐, 𝑏) ∈ 𝑇 ⊆ 𝑄∗, a contradiction. Therefore,(𝑎, 𝑑) ∈ 𝑇 ⊆ 𝑄∗. 
Case 𝟒𝛃. 𝑎, 𝑏 ∈ 𝑇 and(𝑏, 𝑐) ∈ 𝑇. In this case, there are𝜅, 𝜆, 𝜈, 𝜇 ∈ 𝑋 such that(𝑎, 𝜅) ∈ 𝑄, (𝜅, 𝜆) ∈ 𝑄, (𝑎, 𝑏) ∉ 𝑄, (𝑏, 𝜆) ∉

𝑄, (𝑐, 𝜇) ∈ 𝑄, (𝜇, 𝜈) ∈ 𝑄,  𝑐, 𝑑 ∉ 𝑄and 𝑐, 𝜈 ∉ 𝑄 and(𝑐, 𝑏) ∉ 𝑄∗ ⊇ 𝑄.If(𝑎, 𝑑) ∈ 𝑄 ⊆ 𝑄∗, then we have nothing to 
prove.Let(𝑎, 𝑑) ∉ 𝑄. If(𝑑, 𝜆) ∉ 𝑄, then from(𝑎, 𝜅) ∈ 𝑄,  𝜅, 𝜆 ∈ 𝑄and 𝑎, 𝑑 ∉ 𝑄we conclude(𝑎, 𝑑) ∈ 𝑇 ⊆ 𝑄∗. If(𝑑, 𝜆) ∈

𝑄,then we have two subcases to consider: 4𝔞  𝑎, 𝜇 ∈ 𝑄 and 4𝔟 (𝑎, 𝜇) ∉ 𝑄.If(𝑎, 𝜇) ∈ 𝑄, then from 𝜇, 𝜈 ∈ 𝑄,  𝑎, 𝑑 ∉

𝑄 and 𝑑, 𝜆 ∉ 𝑄 we conclude that(𝑎, 𝑑) ∈ 𝑇 ⊆ 𝑄∗. If(𝑎, 𝜇) ∉ 𝑄, then from 𝑐, 𝑚 ∈ 𝑄 and 𝑎, 𝜅 ∈ 𝑄 we conclude 
that(𝑐, 𝑘) ∈ 𝑄. But then,(𝑐, 𝑘) ∈ 𝑄, (𝜅, 𝜆) ∈ 𝑄, (𝑐, 𝑏) ∉ 𝑄 and 𝑏, 𝜆 ∉ 𝑄 implies that (𝑐, 𝑏) ∉ 𝑄∗,anabsurdity. Hence, 
(𝑎, 𝑑) ∈ 𝑄∗. Therefore, 𝑄∗is an interval order.If 𝑄∗ does not satisy the negative semiorder assumption, then 𝑄∗is a 
semiorderextension ofR and the proof is over. Otherwise, 𝑄∗satisfies the negative semiorder assumption. Now, let 

ℰ = {𝑄 ⊆ 𝑋 × 𝑋 ∣ 𝑄is an interval order extension of 𝑅 which satisfies the negative semiorder assumption}. 

We have 𝑄∗ ∈ ℰ, so this class is nonempty. Let  ℭ =   𝒞𝜂
𝑖  

𝜂∈𝐻𝑖
 ∣ 𝑖 ∈ 𝐼  be the family of chains in ℰ. If 𝒞𝜂

𝑖∗ =  𝑄𝑗  𝑗 ∈𝐽
 is 

a chain in ℰ such that 𝑄 = ⋃𝑗∈𝐽  𝑄𝑗  does not satisfy the negative semiorder assumption, then 𝑄  is a semiorder 
extension of𝑅. Otherwise, for each 𝑖 ∈ 𝐼, ⋃𝜂∈𝐻𝑖

 𝒞𝜂
𝑖 ∈ ℰ holds. By Zorn's lemma, there is a maximal element 𝑄 ∗in ℰ. 

We prove that 𝑄 ∗ is a semiorder extension of R. Indeed, suppose to the contrary that 𝑄 ∗ is not a semiorder. Then, 
thereexist𝑥, 𝑦, 𝑤, 𝑧 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝑄 ∗, (𝑦, 𝑧) ∈ 𝑄 ∗, (𝑥, 𝑤) ∉ 𝑄 ∗and(𝑤, 𝑧) ∉ 𝑄 ∗. But then, the relation 

𝑄 ∗ = 𝑄 ∗ ∪ {(𝑥, 𝑤) ∈ 𝑋 × 𝑋 ∖ 𝛥 ∣  there exist 𝑦, 𝑧 ∈ 𝑋 such that (𝑥, 𝑦) ∈

𝑄 ∗, (𝑦, 𝑧) ∈ 𝑄 ∗, (𝑥, 𝑤) ∉ 𝑄 ∗ and (𝑤, 𝑧) ∉ 𝑄 }
 

belongs to ℰ, a contradiction to the maximal character of𝑄 ∗. Therefore, 𝑄 ∗ is a semiorder extension of 𝑅. The 
converse is evident. 
 
The following theorem is proved in a similar way to the proof of Theorem 3.7. 
 
Theorem 3.9. A binary relation𝑅 on a set 𝑋 is a linear-semiorder if and only if𝑅 is acyclic. 
 
 

4 Hybrid order dimension 
 

Today, dimension theory is a strong advancement in graph theory and computer science. This is documented in 
the recent book by Trotter [25], which provides a comprehensive survey.  
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The notion of dimension of a poset(𝑋, ≺) was introduced in a seminal paper by Dushnik and Miller [3] as the 

least𝜆 such that there are 𝜆 linear extensions of ≺ whose intersection is ≺. Equivalently, the dimension of ≺ is the 
dimension of the Euclidean space ℝ𝜆  in which (𝑋, ≺) can be embedded in such a way that 𝑥 ≺ 𝑦 if and only if the 
point of𝑥 is below the point of 𝑦with respect to component wise order (see Ore [15]). In a more general context, 
we often have a class 𝒭 of objects, e.g., acyclic binary relations, graphs, digraphs, specific kinds of them, etc.- and 
a subclass𝒞 of 𝒭 such that every 𝑅 ∈ 𝒭 is either equivalent to the intersection of a number of 𝐶𝑖 ∈ 𝒞 or can be 
embedded into a product ∏𝑖<𝜆  𝐶𝑖 with 𝐶𝑖 ∈ 𝒞 and𝜆 being a cardinal number. Then it is natural to regard the 
necessary number of 𝐶𝜆  as a measure of complexity of𝑅, called the dimension of𝑅 with respect to 𝒞 and 𝒭. 
The following theorem is a generalized result to that of Dushnik and Miller, and it is a key result for the study of 
the interval order dimension. 
 
Theorem 4.1. Let (𝑋, 𝑅) be an abstract system. Then, 𝑅  has as a realizer the set of interval order extensions of𝑅 if 
and only if 𝑅 is acyclic. 
Proof. To prove the necessity, let𝑅 be an acyclic binary relation on 𝑋 and let 𝒬 be the set of all interval order 
extensions of𝑅. By Theorem 3.5, the family of such extensions is non-empty. We show that 𝑅 = ⋂𝑄∈𝒬  𝑄. Clearly, 
𝑅 ⊆ ⋂𝑄∈𝒬  𝑄. Therefore, we have only to show that ⋂𝑄∈𝒬  𝑄 ⊆ 𝑅 . Suppose to the contrary that there exists a pair 
(𝑎, 𝑏) ∈ ⋂𝑄∈𝒬  𝑄but (𝑎, 𝑏) ∉ 𝑅 . We first show that (𝑏, 𝑎) ∉ 𝑅 . Indeed, if we suppose, for the sake of contradiction, that 
(𝑏, 𝑎) ∈ 𝑅 , then we have (𝑏, 𝑎) ∈ 𝑄 = 𝑄. This contradicts the fact that𝑄 is asymmetric (irreflexive and transitive). 
Therefore, 𝑎, 𝑏 ∈ 𝑋 are non-comparable with respect to 𝑅 . Put 

𝑅′ = 𝑅 ∪ {(𝑏, 𝑎)} 

It is easy to check that 𝑅′  is acyclic ((𝑎, 𝑏) ∉ 𝑅 ). By Theorem 3.5, 𝑅′  has an interval order extension 𝑄∗. Therefore, 𝑅 
has an interval order extension 𝑄∗ such that (𝑏, 𝑎) ∈ 𝑄∗, a contradiction to the asymmetry of 𝑄∗ (𝑎, 𝑏) ∈ ⋂𝑄∈𝒬  𝑄 ⊆  𝑄∗ . 

The last contradiction proves that 𝑅 = ⋂𝑄∈𝒬  𝑄. 
To prove the sufficiency of the theorem, let 𝑅 = ⋂𝑄∈𝒬  𝑄, where𝒬 is a family of interval order extensions of𝑅. 
Then,𝑅 is acyclic. Indeed, suppose to the contrary that there are alternatives 𝑥, 𝑥0 , 𝑥1 , … , 𝑥𝑛 ∈ 𝑋such that 

𝑥 = 𝑥0𝑅𝑥1𝑅 …𝑅𝑥𝑛 = 𝑥.  

Since 𝑄 is a transitive extension of 𝑅, we have 𝑥𝑄𝑥, a contradiction to irreflexivity of 𝑄. Therefore, 𝑅 is acyclic. The 
last conclusion completes the proof. 
The following corollary is a consequence of Theorem 4.1. 
 
Corollary 4.2. Let (𝑋, 𝑅) be an abstract system. Then, 𝑅  has as realizer the set of strong interval order extensions 
of 𝑅 if and only if 𝑅 is reflexive and transitively antisymmetric. 
Proof. To prove the necessity, let 𝑅 be reflexive and transitively antisymmetric. Then, 𝑅 ∖ 𝛥 is acyclic. By Theorem 
4.1, we have that 𝑅 ∖ 𝛥 = ⋂𝑄∈𝒬  𝑄, where 𝑄 is an interval order. Therefore, 𝑅 = ⋂𝑄∈𝒬  𝑟𝑐(𝑄) where 𝑟𝑐(𝑄) is a strong 
interval order. Conversely, suppose that R  has as realizer the set 𝒬∗ of strong interval order extensions of 𝑅. If 
𝑄∗ ∈ 𝒬∗, then 𝑄∗ ∖ 𝛥 is an interval order. If we suppose that 𝑅 is not transitively antisymmetric, then we conclude 
that 𝑄∗ ∖ 𝛥 is not asymmetric, which is a contradiction. Therefore, 𝑅 is transitively antisymmetric. On the other 
hand, since 𝛥 ⊆ ⋂𝑄∗∈𝒬∗  𝑄∗ = 𝑅 , we see that for all 𝑥 ∈ 𝑋there is (𝑥, 𝑥) ∈ 𝑅 . Thus, here are alternatives 𝑥, 𝑥0 , 𝑥1 , … , 𝑥𝑛 ∈ 𝑋 
such that 

𝑥 = 𝑥0𝑅𝑥1𝑅 …𝑅𝑥𝑛 = 𝑥. 

Since 𝑅 is transitively antisymmetric, we conclude that 𝑥 = 𝑥0 = 𝑥1 = ⋯ = 𝑥𝑛  which implies that (𝑥, 𝑥) ∈ 𝑅. Hence, 𝑅 
is reflexive. 
Moreover, if𝑅 is transitive, then as immediate consequences of Theorem 4.1 and Corollary 4.2 we have the 
following results. 
 
Corollary 4.3. A binary relation 𝑅 has as realizer the set of its interval order extensions if and only if 𝑅 is a strict 
partial order. 
 
Corollary 4.4. A binary relation 𝑅 has as realizer the set of its strong interval order extensions if and only if 𝑅 is a 
partial order. 
The following result is a generalization of the theorem of Dushnik and Miller [3]. 
 
Theorem 4.5. Let (𝑋, 𝑅)be an abstract system. Then, 𝑅  has as realizer the set of strict linear order extensions of 𝑅 
if and only if𝑅 is acyclic. 
Proof. Let 𝑅 be an acyclic binary relation on 𝑋. Then, (𝑋, 𝑅 ) is a poset. By ([3, Theorem 2.32] we have that the 
family 𝒬 of strict linear order extensions of 𝑅  is a realizer of𝑅 . That is, 𝑅 = ⋂𝑄∈𝒬  𝑄. Since 𝑅 ⊆ 𝑅 and 𝑅 ⊆ 𝑄imply 
𝑅 ⊆ 𝑄 = 𝑄, we have that the family of strict linear order extension of 𝑅  coincides with the family of strict linear 
order extension of 𝑅. 
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Conversely, suppose that 𝑅  has as realizer the set of strict linear order extensions of 𝑅, 𝒬. Then, 𝑅 = ⋂𝑄∈𝒬  𝑄.Since 
⋂𝑄∈𝒬  𝑄 is irreflexive, we conclude that 𝑅  is acyclic. 
 
By analogy to the proof of Corollary 4.2 of Theorem 4.1, we can prove the following corollary from Theorem 4.5. 
Corollary 4.6. Let  𝑋, 𝑅 be an abstract system. Then, 𝑅  has as realizer the set of linear order extensions of 𝑅 if and 
only if 𝑅 is reflexive and transitively antisymmetric. 
Moreover, if 𝑅 is transitive, then as immediate consequences of Theorem 4.5 and Corollary 4.6 we have the 
following results. 
 
Corollary 4.7. Let (𝑋, 𝑅) be an abstract system. Then, 𝑅 has as realizer the set of strict linear order extensions of 𝑅 
if and only if 𝑅 is transitive and asymmetric. 
 
Corollary 4.8. Let (𝑋, 𝑅) be an abstract system. Then, 𝑅 has as realizer the set of linear order extensions of𝑅 if and 
only if 𝑅 is reflexive, thansitive, and antisymmetric. 
The following two theorems are proved in a similarway to the proof of Theorem 4.1. 
 
Theorem 4.9. Let (𝑋, 𝑅) be an abstract system. Then,𝑅  has as realizer the set of linear-interval order extensions of 
𝑅 if and only if 𝑅 is acyclic. 
 
Theorem 4.10. Let (𝑋, 𝑅) be an abstract system. Then, 𝑅  has as realizer the set of linear-semiorder extensions of 
𝑅if and only if 𝑅 is acyclic. 
As we mentioned above, Ore [15] defined order dimension of a poset𝒫 = (𝑋, ≺) as the least cardinal𝜆 (see also 

Hiraguchi [10] ) such that there is an order preserving embedding of (𝑋, ≺) into a direct product 
𝑑𝑝𝑐(𝒫) =⊗   𝑋, ≤𝑖 ∣ 𝑖 < 𝜆  ∏𝑖<𝜆  𝑋

𝑖 , <𝑄 of𝜆 linear orders ≤𝑖 (𝑖 < 𝜆),where <𝑄 is defined by 

 𝑥𝑖 𝑖<𝜆 ≤𝑄  𝑦𝑖 𝑖<𝜆  if and only if 𝑥𝑖 ≤𝑖 𝑦𝑖  holds for all 𝑖 < 𝜆. 
On the other hand, Milner and Pouzet [14] proved that the dimension of a poset𝒫  is equal to the least cardinal 
𝜆such that there is an order preserving embedding of (𝑋, ≺) into a strict direct product 

𝑠𝑝𝑐 𝒫 =⊙   𝑋, <𝑖 ∣ 𝑖 < 𝜆 =  ∏𝑖<𝜆  𝑋
𝑖 , <𝑆 of𝜆 strict linear orders <𝑖 (𝑖 < 𝜆), where <𝑆 is defined by 

 𝑥𝑖 𝑖<𝜆 <𝑆  𝑦𝑖 𝑖<𝜆  if and only if 𝑥𝑖 <𝑖 𝑦𝑖  holds for all 𝑖 < 𝜆.  
 
In order to give general results concerning those of (interval) order dimension, we extend the notions of order 
preserving embedding, componentwise order and (strict) direct product of a partial order to arbitrary binary 
relations. 
In the following, for the sake of maintaining uniformity of notations, for any abstract system  𝑋, 𝑅 we denote 
<𝑅= 𝑃(𝑅)and ≤𝑅= 𝑃(𝑅) ∪ 𝛥 = 𝑟𝑐(𝑃(𝑅)). Clearly, if 𝑅 is acyclic, then <𝑅= 𝑅and ≤𝑅= 𝑟𝑐(𝑅). 

 
Definition 4.1. A mapping from an abstract system (𝑋, 𝑅) to an abstract system  𝑋′ , 𝑅′  is called an dominance-
preserving embedding if it respects the dominance relation, that is, all 𝑥, 𝑦 ∈ 𝑋 are mapped to 𝑥′ , 𝑦′ ∈ 𝑅′  such that 𝑥𝑅𝑦 if 
and only if 𝑥′𝑅′𝑦′ . Let 𝜆 ∈ ℵ be a cardinal number and let ℜ =   𝑋𝑖 , 𝑅𝑖 ∣ 𝑖 < 𝜆 be a family of abstract systems. The 
strict componentwise dominance relation of ℜ is a binary relation 𝑆(ℜ) on the Cartesian product ∏𝑖<𝜆  𝑋

𝑖 such that given 
 𝑥𝑖 𝑖<𝜆 ,  𝑦𝑖 𝑖<𝜆 ∈ ∏𝑖<𝜆  𝑋

𝑖 , we have 
 𝑥𝑖 𝑖<𝜆 <𝑆(ℜ)  𝑦𝑖 𝑖<𝜆  if and only if 𝑥𝑖 <𝑅𝑖

𝑦𝑖  for all 𝑖 < 𝜆.  

The componentwise dominance relation of ℜ is a binary relation 𝑄(ℜ) on the cartesian product ∏𝑖<𝜆  𝑋
𝑖 such that given 

 𝑥𝑖 𝑖<𝜆 ,  𝑦𝑖 𝑖<𝜆 ∈ ∏𝑖<𝜆  𝑋
𝑖 , we have 

 𝑥𝑖 𝑖<𝜆 ≤𝑄(ℜ)  𝑦𝑖 𝑖<𝜆  if and only if 𝑥𝑖 ≤𝑅𝑖
𝑦𝑖  for each 𝑖 < 𝜆.  

The strict direct product of a familyℜ =   𝑋𝑖 , 𝑅𝑖 ∣ 𝑖 < 𝜆 of abstract systems, denoted by⊙   𝑋, 𝒭𝑖 ∣ 𝑖 < 𝜆 , is the 
Cartesian product ∏𝑖<𝜆  𝑋

𝑖equipped with the strict componentwise dominance relation <𝑆(ℜ).In this case, we write 

 𝑋 , <𝑆 ℜ  =⊙   𝑋, 𝒭𝑖 ∣ 𝑖 < 𝜆 where𝑋 = ∏𝑖<𝜆  𝑋
𝑖 . The direct product of a familyℜ =   𝑋𝑖 , 𝑅𝑖 ∣ 𝑖 < 𝜆 of abstract systems, 

denoted by⊗   𝑋, 𝒭𝑖 ∣ 𝑖 < 𝜆 ,is the Cartesian product  ∏𝑖<𝜆  𝑋
𝑖equipped with the componentwise dominance 

relation<𝑄(ℜ).In this case, we write 𝑋 , <𝑄(ℜ) =⊗   𝑋, 𝒭𝑖 ∣ 𝑖 < 𝜆 where 𝑋 = ∏𝑖<𝜆  𝑋
𝑖 . 

In case of (strict) partial orders, the notions of dominance-preserving embedding, componentwise dominance 
relation and (strict) direct product of an abstract system coincide with the notions of order-preserving embedding, 
componentwise order and (strict) direct product of linearly ordered sets, respectively. 
We now extend the notion of order dimension to study the problem of (interval) order dimension in a general 
form. 
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Definition 4.2. Let ℜ = (𝑋, 𝑅) be an abstract system. The (interval order dimension) order dimension  𝑖𝑑𝑖𝑚 ℜ  𝑑𝑖𝑚(ℜ) of 
(𝑋, 𝑅) is the least cardinal 𝜆such that there are 𝜆 (interval order) strict linear order extensions of 𝑅 whose 
intersection is the transitive closure 𝑅 of 𝑅. 
Note that this definition coincides with the classical one when 𝑅 is transitive. 
 
The following theorem generalizes the well-known results of Hiraguchi [10], Ore [15] and Milner and Pouzet [14]. 
Theorem 4.11. Let ℜ = (𝑋, 𝑅) be an abstract system where 𝑅 is acyclic. Then the following statements are 
equivalent. 
(a) The order dimension of ℜ is the least cardinal 𝜆 such that 𝑅  is the intersection of𝜆 strict linear orders. 
(b) The order dimension of ℜ is the least cardinal 𝜆 such that there is a dominance-preserving embedding of 
 𝑋, 𝑅  into a strict direct product of𝜆 strict linear orders. 
(c) The order dimension of ℜ is the least cardinal 𝜆 such that there is a dominance-preserving embedding of 
 𝑋, 𝑅  into a direct product of 𝜆 linear orders. 
Proof.Step 𝟏 (𝑑𝑖𝑚⁡(ℜ) ≥ 𝑠𝑝𝑐⁡(ℜ)). Suppose that ℜ = (𝑋, 𝑅) has order dimension 𝜆. Therefore, 𝑅 = ⋂𝑖<𝜆  ℒ 𝑖 where ℒ 𝑖are 

strict linear orders on𝑋. Let 𝔏 =   𝑋𝑖 , ℒ 𝑖 ∣ 𝑖 < 𝜆 . We define the map 𝑓:  𝑋, 𝑅  ⟶  𝑋 , <𝑆 𝔏   =⊙   𝑋, ℒ𝑖
  ∣ 𝑖 <

𝜆by𝑓(𝑥)=𝑥𝑖𝑖<𝜆 where 𝑥𝑖=𝑥 for all 𝑖<𝜆. Since the ordering <𝑆(𝔏) is defined on 𝑋 by 
  𝑥𝑖 𝑖<𝜆 <𝑆(𝔏 )  𝑦𝑖 𝑖<𝜆  if and only if 𝑥𝑖ℒ 𝑖𝑦𝑖  holds for all 𝑖 < 𝜆, 

we have 
𝑥𝑅 𝑦 ⇔ (∀𝑖)𝑥𝑖ℒ 𝑖𝑦𝑖 ⇔ (∀𝑖)𝑥ℒ 𝑖𝑦 ⇔ 𝑓(𝑥) <𝑆(𝔏 ) 𝑓(𝑦). 

Step 𝟐 (𝑠𝑝𝑐⁡(ℜ) ≥ 𝑑𝑝𝑐(ℜ)). To prove this fact, it suffices to show that the strict direct product  𝑋 , <𝑆(𝔏 ) =⊙

  𝑋, ℒ𝑖
  ∣ 𝑖 < 𝜆  of the strict linear orders ℒ 𝑖 can be embedded into a direct product of linear orders. Indeed, let for 

each 𝑖 < 𝜆, ℒ𝑖 denote the ordering on 𝑋 = ∏𝑖<𝜆  𝑋
𝑖 defined by 

 𝑥𝑗  𝑗 <𝜆
ℒ𝑖 𝑦𝑗  𝑗 <𝜆

ifandonlyifeither𝑥𝑖ℒ 𝑖𝑦𝑖 or𝑥𝑖 = 𝑦𝑖and𝑦𝛾ℒ 𝛾𝑥𝛾where 

𝛾 = 𝑚𝑖𝑛 𝛽 ∣ 𝑥𝛽 ≠ 𝑦𝛽  . 

Clearly, ℒ𝑖 is reflexive   𝛽 ∣ 𝑥𝛽 ≠ 𝑦𝛽  = ∅ , antisymmetric and transitive on 𝑋 . We prove that ℒ𝑖 is also total on 𝑋 . 

Suppose that 𝑥𝑖ℒ𝑖𝑦𝑖 is false. Since ℒ𝑖
  is total, it follows that 

  𝑥𝑖 , 𝑦𝑖 ∉ ℒ 𝑖 ∧ 𝑥𝑖 ≠ 𝑦𝑖 ∨   𝑥𝑖 , 𝑦𝑖 ∉ ℒ 𝑖 ∧  𝑦𝛾 , 𝑥𝛾 ∉ ℒ 𝛾 , 𝛾 = 𝑚𝑖𝑛 𝛽 ∣ 𝑥𝛽 ≠ 𝑦𝛽                                     

=   𝑦𝑖ℒ 𝑖𝑥𝑖  ∨   𝑦𝑖ℒ 𝑖𝑥𝑖 ∧  𝑥𝛾ℒ 𝛾𝑥𝛾  ∨   𝑦𝑖 = 𝑥𝑖 ∧  𝑥𝛾ℒ 𝛾𝑥𝛾  = 𝐴 ∨ 𝐵 ∨ 𝐶. 

In all cases 𝐴, 𝐵 and 𝐶 we have 𝑦𝑖ℒ𝑖𝑥𝑖 . It follows that ℒ𝑖 is a linear order extension of <𝑆(𝔏 ). We prove that  𝑋 , <𝑆(𝔏 )  

is embedded in the direct product  𝑋  , <𝑄(𝔏) =⊗   𝑋 , ℒ𝑖 ∣ 𝑖 < 𝜆 , where 𝔏 =   𝑋𝑖 , ℒ𝑖 ∣ 𝑖 < 𝜆 and 𝑋  = ∏𝑖<𝜆  𝑋 
𝑖 .Let𝑥 =

 𝑥𝑖 𝑖<𝜆where 𝑥𝑖 = 𝑥 for all𝑖 < 𝜆. We claim that 𝑋 , <𝑆(𝔏 ) is embedded in the direct product  𝑋  , <𝑄(𝔏) by the 

mapping𝑓 𝑥  =  𝑥 𝑖 𝑖<𝜆where𝑥 𝑖 = 𝑥 forall𝑖 < 𝜆. Indeed, if x <S(𝔏 ) y , then xiℒ iyiand sox ℒiy  for 

alli < 𝜆.Therefore,𝑓(𝑥 ) <𝑄(𝔏) 𝑓(𝑦 ). Conversely, if𝑓(𝑥 ) <𝑄(𝔏) 𝑓(𝑦 ), then𝑥 ≠ 𝑦  and𝑥 ℒ𝑖𝑦  for all𝑖 < 𝜆.Therefore, 

either𝑥𝑖ℒ𝑖
 𝑦𝑖 or𝑥𝑖 = 𝑦𝑖for all𝑖 < 𝜆. If𝑥𝑖 = 𝑦𝑖 ,then there is some𝛾 < 𝜆such that𝑦𝛾ℒ 𝛾𝑥𝛾and𝛾 = 𝑚𝑖𝑛 𝛽 ∣ 𝑥𝛽 ≠ 𝑦𝛽  . On the 

other hand,𝑥 ℒ𝑖𝑦 for all𝑖 < 𝜆implies that𝑥 ℒ𝛾𝑦  and thus 𝑥𝛾ℒ 𝛾𝑦𝛾 .Since ℒ 𝛾 is transitive, 𝑥𝛾ℒ 𝛾𝑦𝛾and𝑦𝛾ℒ 𝛾𝑥𝛾 imply that 𝑥𝛾ℒ 𝛾𝑥𝛾 , 
a contradiction to irreflexivity of ℒ 𝛾 .Therefore, 𝑥𝑖ℒ 𝑖𝑦𝑖for all𝑖 < 𝜆. It follows that 𝑥 <𝑆(ℒ ) 𝑦 .The last conclusion shows 

that 
x <S(𝔏 ) y ⇔ f x  <Q 𝔏 f y  . 

 

Step 𝟑 (𝑠𝑝𝑐(ℜ) ≥ 𝑑𝑖𝑚(ℜ)).Suppose that 𝑠𝑝𝑐(ℜ) = 𝜆. By definition, 𝜆 is the least cardinal such that there is a 
dominance-preserving embedding 𝑓 of (𝑋, 𝑅 ) into a direct product  𝑋 , <𝑄(𝔐) =⊗   𝑋, ℳ𝑖 ∣ 𝑖 < 𝜆 , where each ℳ𝑖 is 

a linear order, 𝔐 =  ℳ𝑖 ∣ 𝑖 < 𝜆  and <𝑄(𝔐) is defined by 

 𝑥𝑖 𝑖<𝜆 ≤𝑄(𝔐)  𝑦𝑖 𝑖<𝜆  if and only if 𝑥𝑖 ≤ℳ𝑖
𝑦𝑖  holds for all 𝑖 < 𝜆. 

Then, by supposition we have 

𝑥𝑅 𝑦 ⇔ 𝑓(𝑥) <𝑄(𝔐) 𝑓(𝑦). 

If 𝑓(𝑥) =  𝑥𝑖 𝑖<𝜆 , we write𝑓𝑖(𝑥) = 𝑥𝑖 . Then, for each 𝑖 < 𝜆 define a linear order𝒞𝑖 on𝑋by 
𝑥𝒞𝑖𝑦 if and only if either𝑓𝑖 𝑥 ≠ 𝑓𝑖 𝑦 and 𝑓𝑖(𝑥) ≤ℳ𝑖

𝑓𝑖(𝑦)hold or 
𝑓𝑖(𝑥) = 𝑓𝑖(𝑦) and 𝑓𝑗 (𝑦) ≤ℳ𝑗

𝑓𝑗 (𝑥), where 

𝑗 = 𝑚𝑖𝑛 𝑘 < 𝜆 ∣ 𝑓𝑘(𝑥) ≠ 𝑓𝑘(𝑦) .
 

We prove that 
𝑓(𝑥) <𝑄(𝔐) 𝑓(𝑦) ⇔ (∀𝑖 < 𝜆) 𝑥𝒞𝑖𝑦 . 

Indeed, let𝑓(𝑥) <𝑄(𝔐) 𝑓(𝑦), then𝑥 ≠ 𝑦 and thus for all𝑖 < 𝜆, we have 𝑓𝑖(𝑥) ≤ℳ𝑖
𝑓𝑖(𝑦)and 𝑓𝑖(𝑥) ≠ 𝑓𝑖(𝑦). Therefore, for 

all𝑖 < 𝜆we have𝑥 𝒞𝑖𝑦. Hence, 
𝑓(𝑥) <𝑄(𝔐) 𝑓(𝑦) ⇒ (∀𝑖 < 𝜆) 𝑥𝒞𝑖𝑦 . 

Conversely, let𝑥𝒞𝑖𝑦for all𝑖 < 𝜆. Then, either 𝔞  𝑓𝑖 𝑥 ≠ 𝑓𝑖 𝑦 and 𝑓𝑖 𝑥 ≤ℳ𝑖
𝑓𝑖 𝑦 or(𝔟) 𝑓𝑖(𝑥) =

𝑓𝑖(𝑦)and 𝑓𝑗 (𝑦) ≤ℳ𝑗
𝑓𝑗 (𝑥),where𝑗 = 𝑚𝑖𝑛 𝑘 < 𝜆 ∣ 𝑓𝑘(𝑥) ≠  𝑓𝑘(𝑦) hold.Supposethat 𝑓𝑖 𝑥 = 𝑓𝑖 𝑦 forsome𝑖 <
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𝜆.Then,𝑓𝑗 (𝑦) ≤ℳ𝑗

𝑓𝑗 (𝑥),where𝑗 = 𝑚𝑖𝑛 𝑘 < 𝜆 ∣ 𝑓𝑘(𝑥) ≠ 𝑓𝑘(𝑦) . Since𝑥𝒞𝑗𝑦 and  𝑓𝑗  𝑥 ≠ 𝑓𝑗  𝑦 we have𝑓𝑗 (𝑥) ≤ℳ𝑗
𝑓𝑗 (𝑦).By the 

antisymmetry of≤ℳ𝑗
 we have𝑓𝑗  𝑥 = 𝑓𝑗  𝑦 which is impossible by the definition of𝑗. The last contradiction shows 

that for all𝑖 < 𝜆we have 𝑓𝑖 𝑥 ≠ 𝑓𝑖 𝑦 and 𝑓𝑖(𝑥) ≤ℳ𝑖
𝑓𝑖(𝑦). It follows that 

(∀𝑖 < 𝜆) 𝑥𝒞𝑖𝑦 ⇒ (∀𝑖 < 𝜆)  𝑓𝑖(𝑥) ≠ 𝑓𝑖(𝑦) ∧  𝑓𝑖(𝑥) ≤ℳ𝑖
𝑓𝑖(𝑦)  ⇒ (∀𝑖 <

𝜆) 𝑓𝑖(𝑥) <ℳ𝑖
𝑓𝑖(𝑦) ⇒ (∀𝑖 < 𝜆) 𝑥𝑖 <ℳ𝑖

𝑦𝑖 ⇒  𝑥𝑖 𝑖<𝜆 <𝑄(𝔐)  𝑦𝑖 𝑖<𝜆 ⇒

𝑓(𝑥) <𝑄(𝔐) 𝑓(𝑦).

 

The last conclusion implies that, 
𝑓(𝑥) <𝑄(𝔐) 𝑓(𝑦) ⇔ (∀𝑖 < 𝜆) 𝑥𝒞𝑖𝑦 . 

Therefore, 
𝑥𝑅 𝑦 ⇔ 𝑓(𝑥) <𝑄(𝔐) 𝑓(𝑦) ⇔ (∀𝑖 < 𝜆) 𝑥𝒞𝑖𝑦 . 

Since 𝑅 is acyclic, the last implication implies that 𝑅 = ⋂𝑖<𝜆   𝒞𝑖 ∖ 𝛥 , where for all 𝑖 < 𝜆, 𝒞𝑖 ∖ 𝛥 is a strict linear order. 
Because of the three steps above we conclude that 𝑑𝑖𝑚 ℜ = 𝑠𝑝𝑐(ℜ) = 𝑑𝑝𝑐(ℜ), and the proof is complete. 
As an immediate consequence of Theorem 4.11, we have the following corollary which is the main result of [14].  
 
Corollary 4.12. Let 𝔉 = (𝑋, ≺) be a poset. Then the following statements are equivalent. 
(a) The order dimension of 𝔉 is the least cardinal 𝜆 such that ≺ is the intersection of 𝜆  strict linear orders. 
(b) The order dimension of 𝔉 is the least cardinal𝜆 such that there is an embedding of (𝑋, ≺) into a strictdirect 
product of 𝜆strict linear orders. 
(c) The order dimension of 𝔉 is the least cardinal 𝜆 such that there is an embedding of (𝑋, ≺) into a directproduct 
of 𝜆 linear orders. 
 
An alternative definition of the interval order ≺ defined in 𝑋 can be made by assigning to each element𝑥 ∈ 𝑋 an 
open interval 𝐼𝑥 =  𝑎𝑥 , 𝑏𝑥 of the real line, such that 𝑥 ≺ 𝑦in 𝑋 if and only if 𝑏𝑥 ≤ 𝑎𝑦 . Such a collection of intervals is 

called an interval representationof ≺. Let 𝜆 ∈ ℵbe a cardinal number and let ℐ =  𝐼𝑖 𝑖<𝜆  be a family of interval orders. 
We denote by 𝐼 𝑖the interval order representation of each interval order 𝐼𝑖 .Let  𝑎𝑥

𝑖 , 𝑏𝑥
𝑖   be an interval corresponding 

to 𝑥 ∈ 𝑋 in the representation of 𝐼 𝑖 . With 𝑥 ∈ 𝑋 we associate the box ∏𝑖<𝜆   𝑎𝑥
𝑖 , 𝑏𝑥

𝑖  ⊆ ℝ𝜆 . Each of these boxes is 
uniquely determined by its upper extreme corner𝑢𝑥 =  𝑏𝑥

𝑖  
𝑖<𝜆

 and its lower extreme corner 𝑙𝑥 =  𝑎𝑥
𝑖  

𝑖<𝜆
. Such an assignment 

is called a box embeddingof𝑋. For the interval order dimension, the box embedding plays the role of the point 
embedding inℝ𝜆  introduced by Ore. The projections of a box embedding on each coordinate yields an interval 
order (see [5]). 
 
To approach the interval orders analogue of the Hiraguchi [10], Ore [15] and Milner and Pouzet [14] results for 
posets, in a first step the concepts of direct product and strict direct product have to be generalized from linear 

orders to interval orders on 𝑋. The direct product of a family 𝔊 =   𝑋𝑖 , ⪯𝑖 ∣ 𝑖 < 𝜆  of strong interval orders is the 
Cartesian product ∏𝑖<𝜆  𝑋

𝑖 equipped with the ordering ⪯𝑄(𝔊) defined by 

𝑥 ⪯𝑄(𝔊) 𝑦if and only if either 𝑏𝑥
𝑖 ≤ 𝑎𝑦

𝑖  or 𝑎𝑥
𝑖 = 𝑎𝑦

𝑖 , 𝑏𝑥
𝑖 = 𝑏𝑦

𝑖  holds for all 𝑖 < 𝜆. 

The strict direct product of a family 𝔊 =   𝑋𝑖 , ≺𝑖 ∣ 𝑖 < 𝜆  of interval orders is the Cartesian product ∏𝑖<𝜆  𝑋
𝑖 equipped 

with the ordering ≺𝑆(𝔊) defined by 
𝑥 ≺𝑠(𝔊) 𝑦 if and only if 𝑏𝑥

𝑖 ≤ 𝑎𝑦
𝑖  holds for all i < 𝜆.  

 
Definition 4.3. Let 𝔓 = (𝑋, 𝑅) be an abstract system. (i)We call 𝑖𝑑𝑝𝑐(𝔓), the least cardinal 𝜆 such that there is a box 
embedding of (𝑋, 𝑅 ) into a direct product of 𝜆 strong interval orders. (ii) We call 𝑠𝑝𝑐(𝔓) the least cardinal 𝜆 such 
that there is a box embedding of (𝑋, 𝑅 ) into a direct product of 𝜆 interval orders.  
 
Theorem 4.13. Let 𝔓 = (𝑋, 𝑅) be an abstract system where 𝑅 is acyclic. Then the following statements are 
equivalent. 
(a) The interval order dimension of 𝔓 is the least cardinal 𝜆 such that 𝑅  is the intersection of λ interval orders. 
(b) The interval order dimension of 𝔓 is the least cardinal 𝜆 such that there is a box embedding of (𝑋, 𝑅 ) into a 
strictdirect product of 𝜆 interval orders. 
(c) The interval order dimension of 𝔓 is the least cardinal 𝜆 such that there is a box embedding of (𝑋, 𝑅 ) into a 
direct product of λ strong interval orders. 
Proof.Step 𝟏 (𝑖𝑑𝑖𝑚(𝔓) ≥ 𝑖𝑠𝑝𝑐(𝔓)). Suppose that 𝔓 = (𝑋, 𝑅) has interval order dimension𝜆. Therefore, 𝑅 = ⋂𝑖<𝜆   ≺𝑖 
where ≺𝑖 are interval orders on𝑋.Let ℐ =  𝐼𝑥

𝑖 ∣ 𝑥 ∈ 𝑋 , where 𝐼𝑥
𝑖 =  𝑎𝑥

𝑖 , 𝑏𝑥
𝑖   be an interval representation of≺𝑖 .Let also 

𝑋 = ∏𝑖<𝜆  X
iand 𝔒 =  ≺i∣ i < 𝜆 . We define the map 𝑓:  𝑋, 𝑅  ⟶  𝑋 , <𝑆 𝔒   =⊙   𝑋, ≺𝑖 ∣ 𝑖 < 𝜆 by𝑓(𝑥) = ∏𝑖<𝜆   𝑎𝑥

𝑖 , 𝑏𝑥
𝑖  . 

The ordering <𝑆(𝔒 ) is defined by 

 𝑓(𝑥) <𝑆(𝔒 ) 𝑓(𝑦) if and only if 𝑏𝑥
𝑖 ≤ 𝑎𝑦

𝑖  holds for all 𝑖 < 𝜆. 
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Therefore, 
 𝑥𝑅 𝑦 ⇔ (∀𝑖 < 𝜆) 𝑏𝑥

𝑖 ≤ 𝑎𝑦
𝑖  ⇔ 𝑓(𝑥) <𝑆(𝔒 ) 𝑓(𝑦). 

Step 𝟐 (𝑖𝑠𝑝𝑐(𝔓 ≥ 𝑖𝑑𝑝𝑐(𝔓)). To show this fact, it suffices to show that the strict direct product  𝑋 , <𝑆(𝔒 ) =⊙

  𝑋, ≺𝑖 ∣ 𝑖 < 𝜆  can be box embedded into a direct product of strong interval orders. Indeed, let ℐ =  𝐼𝑥
𝑖 ∣ 𝑥 ∈ 𝑋 , 

where for each 𝑖 < 𝜆, 𝐼𝑥
𝑖 =  𝑎𝑥

𝑖 , 𝑏𝑥
𝑖   be an interval representation of ≺𝑖 .For each 𝑖 < 𝜆, define the ordering ⊑𝑖 on X by 

 𝑥𝑗  𝑗 <𝜆
⊑𝑖  𝑦𝑗  𝑗 <𝜆

if and only if either (i)𝑏𝑥
𝑖 ≤ 𝑎𝑦

𝑖 or (ii) 𝑎𝑥
𝑖 = 𝑎𝑦

𝑖 , 𝑏𝑥
𝑖 = 𝑏𝑦

𝑖 and 

where  k = 𝑚𝑖𝑛 μ ∣ ax
μ ≠ ay

μ or bx
μ ≠ by

μ  . 

Clearly, for all 𝑖, ⊑𝑖 is an extension of <𝑆(𝔒 ). Since the reals satisfy the law of trichotomy we conclude that for each 

𝑖 < 𝜆, ⊑𝑖 is a strong interval order. We show that  𝑋 , <𝑆(𝔒 )  is box embedded in the direct product  𝑋  , <𝑄(𝔒) =⊗

  𝑋 , ⊑𝑖 ∣ 𝑖 < 𝜆 ,where 𝔒 =   𝑋 , ⊑𝑖 ∣ 𝑖 < 𝜆 and 𝑋  = ∏𝑖<𝜆  𝑋 
𝑖 .Let 𝑥 =  𝑥𝑖 𝑖<𝜆 , where 𝑥𝑖 = 𝑥for all i < 𝜆. By definition, the 

ordering <𝑄(𝔇) is defined 
 𝑥 𝑗  𝑗 <𝜆

<𝑄(𝔒)  𝑦 𝑗  𝑗 <𝜆
 if and only if  𝑥 𝑗  𝑗 <𝜆

⊑𝑖  𝑦 𝑗  𝑗 <𝜆
 holds for all 𝑖 < 𝜆.  

Let𝑓be the mapping𝑓(𝑥 ) =  𝑥 𝑖 𝑖<𝜆 ,where𝑥 𝑖 = 𝑥 for all𝑖 < 𝜆.Clearly, there holds the following implication: 
𝑥 <𝑆(𝔒 ) 𝑦 ⇔ (∀𝑖 < 𝜆) 𝑏𝑥

𝑖 ≤ 𝑎𝑦
𝑖  ⇒ (∀𝑖 < 𝜆) 𝑥 ⊑𝑖 𝑦  ⇔ 𝑓(𝑥 ) <𝑄(𝔒) 𝑓(𝑦 ). 

Conversely, if𝑓(𝑥 ) <𝑄(𝔒) 𝑓(𝑦 ),then 𝑥 ⊑𝑖 𝑦 for all𝑖 < 𝜆. Therefore, for all𝑖 < 𝜆 

 𝑏𝑥
𝑖 ≤ 𝑎𝑦

𝑖  ∨   𝑎𝑥
𝑖 = 𝑎𝑦

𝑖 , 𝑏𝑥
𝑖 = 𝑏𝑦

𝑖  ∧  𝑏𝑦
𝑘 ≤ 𝑎𝑥

𝑘   where𝑘 = 𝑚𝑖𝑛 𝜇 ∣ 𝑎𝑥
𝜇

≠ 𝑎𝑦
𝜇   or   𝑏𝑥

𝜇
≠ 𝑏𝑦

𝜇
   

Suppose that 𝑎𝑥
𝑖 = 𝑎𝑦

𝑖 and𝑏𝑥
𝑖 = 𝑏𝑦 

𝑖 for some𝑖 < 𝜆. Then, there is some𝑘 such that 𝑏𝑦
𝑘 ≤ 𝑎𝑥

𝑘 . On the other hand, 
since𝑥 ⊑𝑘 𝑦 and𝑎𝑦

𝑘 < 𝑏𝑦
𝑘 ≤ 𝑎𝑥

𝑘 < 𝑏𝑥
𝑘 𝑎𝑥

𝑘 ≠ 𝑎𝑦
𝑘  and  𝑏𝑥

𝑘 ≠ 𝑏𝑦
𝑘 , we have that 𝑏𝑥

𝑘 ≤ 𝑎𝑦
𝑘 . But 

then, 𝑏𝑦
𝑘 ≤ 𝑎𝑥

𝑘 < 𝑏𝑥
𝑘 ≤ 𝑎𝑦 

𝑘 implies 𝑏𝑦
𝑘 < 𝑎𝑦

𝑘  which is impossible. The last contradiction shows that for all𝑖 < 𝜆 there 
holds 𝑏𝑥

𝑖 ≤ 𝑎𝑦
𝑖 , which implies that𝑥 <𝑆(𝐷 ) 𝑦 . Therefore, 

𝑥 <𝑆(𝔒 ) 𝑦 ⇔ 𝑓(𝑥 ) <𝑄(𝔒) 𝑓(𝑦 ). 

Step 𝟑 (𝑖𝑑𝑝𝑐(𝔓) ≥ 𝑖𝑑𝑖𝑚(𝔓)). Suppose that𝑖𝑑𝑝𝑐(𝔓) = 𝜆. Then, 𝜆 is the least cardinal such that there is a box 
embedding𝑓of 𝑋, 𝑅  into a direct product 𝑋 , <𝑄(𝔗) =⊗   𝑋, ⊴𝑖 ∣ 𝑖 < 𝜆 of strong interval orders ⊴𝑖 ∣ 𝑖 < 𝜆 = 𝔗.By 

definition, 𝑋 = ∏𝑖<𝜆  𝑋
𝑖 .On the other hand, if for all𝑖 < 𝜆, 𝔋𝑥

𝑖 =  𝛼𝑥
𝑖 , 𝛽𝑥

𝑖  is an interval representationof  ⊴𝑖 , then the 
ordering<𝑄 𝔗 is defined by 

 𝑥𝑖 𝑖<𝜆 <𝑄(𝔗)  𝑦𝑖 𝑖<𝜆  if and only if 𝛽𝑥
𝑖 ≤ 𝛼𝑦

𝑖  holds for all 𝑖 < 𝜆.  

Then, by definition, we have 
𝑥𝑅 𝑦 ⇔ 𝑓(𝑥) <𝑄(𝔗) 𝑓(𝑦). 

If𝑓(𝑥) =  𝑥𝑗  𝑗 <𝜆
,then for each𝑖 < 𝜆we define the ordering≪𝑖on𝑋by: 

𝑥 ≪𝑖 𝑦 ifand only if either 𝛽𝑥
𝑖 ≤ 𝛼𝑦

𝑖 or𝛼𝑥
𝑖 = 𝛼𝑦

𝑖 , 𝛽𝑥
𝑖 = 𝛽𝑦

𝑖 and𝛽𝑦
𝑘 ≤ 𝛼𝑥

𝑘 , where𝑘 = 𝑚𝑖𝑛 𝜇 ∣ 𝑎𝑥
𝜇

≠ 𝑎𝑦
𝜇   or  𝑏𝑥

𝜇
≠ 𝑏𝑦

𝜇
 . 

Clearly,each ≪𝑖is a strong interval order extension of⊴𝑖 . We prove that 
𝑓(𝑥) <𝑄(𝔗) 𝑓(𝑦)  ⇔(∀𝑖 <  𝜆)(𝑥 ≪𝑖 𝑦). 

Indeed, let𝑓(𝑥) <𝑄(𝔗) 𝑓(𝑦). Then, 𝑥 ≠ 𝑦 and for any𝑖 < 𝜆there holds 𝛽𝑥
𝑖 ≤ 𝛼𝑦

𝑖 andso𝑥 ≪𝑖 𝑦 for all𝑖 < 𝜆.Conversely, 

let𝑥 ≪𝑖 𝑦 for all𝑖 < 𝜆. Then, either 

(𝔞)    𝑎𝑥
𝑖 ≠ 𝑎𝑦

𝑖  ∨  𝑏𝑥
𝑖 ≠ 𝑏𝑦

𝑖   ∧  𝛽𝑥
𝑖 ≤ 𝛼𝑦

𝑖   

or 

(𝔟)  𝑎𝑥
𝑖 = 𝑎𝑦

𝑖  ∧  𝑏𝑥
𝑖 = 𝑏𝑦

𝑖   ∧   𝛽𝑦
𝑗
≤ 𝛼𝑥

𝑗
  , where𝑗 = 𝑚𝑖𝑛 𝑘 < 𝜆 ∣ 𝑎𝑥

𝑘 ≠ 𝑎𝑦
𝑘   or  𝑏𝑥

𝑘 ≠ 𝑏𝑦
𝑘   

Suppose that𝑎𝑥
𝑖 = 𝑎𝑦

𝑖 and𝑏𝑥
𝑖 = 𝑏𝑦

𝑖 for some𝑖 < 𝜆. Then,𝛽𝑦
𝑗
≤ 𝛼𝑥

𝑗 where𝑗 has the meaning above mentioned. On the 

other hand, 𝛽𝑦
𝑗
≤ 𝛼𝑥

𝑗 implies that 𝑎𝑥
𝑗
≠ 𝑎𝑦

𝑗  or 𝑏𝑥
𝑗
≠ 𝑏𝑦

𝑗
.Since 𝑥 ≪𝑗 𝑦we have that 𝛽𝑥

𝑗
≤ 𝛼𝑦

𝑗
.It follows that 𝛽𝑦

𝑗
< 𝛼𝑦

𝑗
 𝛼𝑥

𝑗
<

𝛽𝑥𝑗which is impossible. The last conclusion shows that for all𝑖<𝜆we have that the case (𝔞) holds. Therefore, 
 ∀𝑖 < 𝜆  𝑥 ≪𝑖 𝑦 ⇒  ∀𝑖 < 𝜆  𝛽𝑥

𝑖 ≤ 𝛼𝑦
𝑖  ⇒  𝑥𝑖 𝑖<𝜆 <𝑄 𝔗  𝑦𝑖 𝑖<𝜆 ⇒ 𝑓(𝑥) <𝑄(𝔗)

𝑓(𝑦).
 

Therefore, by combining the previous implications, we get 
(∀𝑖 < 𝜆) 𝑥 ≪𝑖 𝑦 ⇔ 𝑓(𝑥) <𝑄(𝔗) 𝑓(𝑦). 

Finally, by𝑥𝑅 𝑦 ⇔ 𝑓(𝑥) <𝑄(𝔗) 𝑓(𝑦), we have that 
𝑥𝑅 𝑦 ⇔ 𝑓(𝑥) <𝑄(𝔗) 𝑓(𝑦) ⇔ (∀𝑖 < 𝜆) 𝑥 ≪𝑖 𝑦 . 

Since 𝑅 is acyclic, the last implication implies that𝑅 = ⋂𝑖<𝜆   ≪𝑖∖ 𝛥 , where for all𝑖 < 𝜆, ≪𝑖  ∖ 𝛥is an interval order. 
Because of the three steps above we conclude that𝑑𝑖𝑚⁡(ℜ) = 𝑠𝑝𝑐⁡(ℜ) = 𝑑𝑝𝑐(ℜ), and the proof is complete. 
The following corollary is an immediate consequence of Theorem 4.13. 
 
Corollary 4.14.Let 𝔊 = (𝑋, ≺) be a poset. Then the following statements are equivalent. 
(a) The interval order dimension of 𝔊 is the least cardinal 𝜆 such that ≺ is the intersection of 𝜆 interval orders. 
(b) The interval order dimension of 𝔊 is the least cardinal𝜆 such that there is a box embedding of (𝑋, ≺) into a 
strict direct product of 𝜆interval orders. 
(c) The interval order dimension of𝔊 is the least cardinal𝜆 such that there is a box embedding of (𝑋, ≺) into a 
directproduct of 𝜆 strong interval orders. 
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Let 𝑇 be a triangle 𝐴𝐵𝐶. Denote 𝜅(𝑇) = 𝐴and 𝜋(𝑇) = 𝐵𝐶. Let 𝐿1and 𝐿2 be two distinct parallel lines. A point-interval 
graph orPI graph is the intersection graph of a family of triangles 𝐴𝐵𝐶, such that 𝐴is on𝐿1and𝐵𝐶is on 𝐿2.Except for 
the definition we gave in the introduction, the linear-interval order can also be defined as follows: An acyclic 
binary relation 𝑅 is a linear-interval order if there is such a triangle 𝑇𝑥for each element𝑥 ∈ 𝑋, and  𝑦, 𝑥 ∈ 𝑅 if and 
only if𝑇𝑦 lies completely to the left of 𝑇𝑥 . In fact, the ordering of the apices 𝜅 𝑇𝑥 = 𝑥 of the triangles gives the linear 
order L, and the bases 𝜋 𝑇𝑥 =  𝑎𝑥 , 𝑏𝑥  of the triangles give an interval representation of the interval order 𝑃 for 
which 𝑅 = 𝐿 ∩ 𝑃. As usual, the left and right extreme points of an interval 𝐼𝑥  are denoted by 𝑎𝑥and𝑏𝑥 ,respectively. 
When 𝑎𝑥 = 𝑏𝑥 = 𝑥, we say that 𝐼𝑥  is trivial. Let ℝ𝜆  be the cartesian product of 𝜆 many copies of ℝ. A linear-interval 
point 𝛾 is the set ∏𝑖<𝜆  𝐼𝑖 where 𝐼𝑖 ⊂ ℝfor all𝑖 < 𝜆(notice that in this definition it is allowed that 𝐼𝑖 be trivial). With 
𝑥 ∈ 𝑋 we associate the box ∏𝑖<𝜆   𝑎𝑥

𝑖 , 𝑏𝑥
𝑖  ⊆ ℝ𝜆 . This assignment is called a linear interval box embeddingof 𝑋. 

For the linear-interval order dimension, the linear-interval box embedding plays the role of the point embedding 
into ℝ𝜆  introduced by Ore. The projections of a linear-interval box embedding on each coordinate yield a linear 
order or an interval order. 
To approach the linear-interval orders analogue of the Hiraguchi [10], Ore [15] and Milner and Pouzet [14] results 
for posets, in a first step the concepts of direct product and strict direct product must be generalized from linear 
orders and interval orders to linear-interval orders on 𝑋. The direct product of a family 𝔊 =   𝑋𝑖 , ⪯𝑖 ∣ 𝑖 < 𝜆 of strong 
linear-interval orders is the Cartesian product ∏𝑖<𝜆  𝑋

𝑖 equipped with the ordering ⪯𝑄(𝔊) defined by 
𝑥 ⪯𝑄(𝔊) 𝑦 if and only if either 𝑏𝑥

𝑖 ≤ 𝑎𝑦
𝑖  or 𝑎𝑥

𝑖 = 𝑎𝑦
𝑖 , 𝑏𝑥

𝑖 = 𝑏𝑦
𝑖  holds for all 𝑖 < 𝜆.  

The strict direct product of a family 𝔊 =   𝑋𝑖 , ≺𝑖 ∣ 𝑖 < 𝜆  of linear-interval orders is the Cartesian product ∏𝑖<𝜆  𝑋
𝑖 

equipped with the ordering ≺𝑆(𝔊) defined by 
𝑥 ≺𝑠(𝔊) 𝑦 if and only if 𝑏𝑥

𝑖 ≤ 𝑎𝑦
𝑖  holds for all 𝑖 < 𝜆. 

 

Definition 4.4. Let𝔓 =  𝑋, 𝑅 be an abstract system. (i) We call𝑙𝑖𝑑𝑝𝑐(𝔓), the least cardinal 𝜆 such that there is a 
linear-interval box embedding of (𝑋, 𝑅 ) into a direct product of 𝜆 strong linear-interval orders. (ii) We call 𝑙𝑖𝑠𝑝𝑐(𝔓), 
the least cardinal𝜆 such that there is a linear-interval box embedding of (𝑋, 𝑅 )into a direct product of𝜆 linear-
interval orders. 
The following theorem generalizes Theorem 4.11 and Theorem 4.13. The prove is omitted since it follows the 
same scheme. 
 
Theorem 4.15. Let 𝔓 = (𝑋, 𝑅) be an abstract system where 𝑅 is acyclic. Then the following statements are 
equivalent. 
(a) The (𝜆, 𝜇)-linear-interval order dimension of 𝔓 is the least cardinal 𝜆 such that 𝑅  is the intersection of 𝜆 linear-
interval orders which 𝜇 of them are not linear orders. 
(b) The (𝜆, 𝜇)-linear-interval order dimension of 𝔓 is the least cardinal 𝜆 such that there is a linear-interval 
embeddingof (𝑋, 𝑅 ) into a strict direct product of 𝜆 linear interval orders, of which 𝜇 are not strict linear orders. 
(c) The (𝜆, 𝜇)-linear-interval order dimension of 𝔓 is the least cardinal 𝜆 such that there is a strong linear-
intervalembedding of  𝑋, 𝑅  into a direct product of 𝜆 strong linear-interval orders which𝜇 of them are not linear 
orders. 
The following corollary is an immediate consequence of Theorem 4.17. 
 
Corollary 4.16. Let 𝔊 = (𝑋, ≺) be a poset. Then the following statements are equivalent. 
(a) The (𝜆, 𝜇)-linear-interval order dimension of 𝔊 is the least cardinal 𝜆 such that ≺ is the intersection of 𝜆 linear-

interval orders which𝜇 of them are not linear orders.  
(b) The (𝜆, 𝜇)-linear-interval order dimension of ≺ is the least cardinal 𝜆 such that there is a linear-interval 
embeddingof(𝑋, ≺) into a strict direct product of 𝜆 linear-interval orders which𝜇 of them are not strict linear 
orders. 
(c) The (𝜆, 𝜇)-linear-interval order dimension of 𝔊 is the least cardinal𝜆 such that there is a strong linear-
intervalembedding of (𝑋, ≺) into a direct product of 𝜆 strong linear-interval orders which 𝜇 of them are not linear 
orders. 
Using the previous approach for linear-interval orders, we can define in a similar way the notion of (strong) linear-
semiorder box embedding. The only difference is that a semiorder is a poset whose elements correspond to unit 
length intervals. 
 
Definition 4.5. Let 𝔓 = (𝑋, 𝑅)be an abstract system. (i) We calls𝑖𝑑𝑝𝑐 𝔓 , the least cardinalλ such that there is a 
linear-semiorder box embedding of (𝑋, 𝑅 ) into a direct product of 𝜆 strong linear-semiorders. (ii) We call s𝑖𝑠𝑝𝑐 𝔓 , 
the least cardinal 𝜆 such that there is a linear-semiorder box embedding of (𝑋, 𝑅 ) into a direct product of𝜆 linear-
semiorders. 
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The following two theorems are proved in a similar way to the proof of Theorems 4.11 and 4.13, by using 
Theorem 3.8, Theorem 3.9 and Definition 4.5. 
 
Theorem 4.17. Let 𝔓 = (𝑋, 𝑅) be an abstract system where 𝑅 is acyclic. Then the following statements are 
equivalent. 
(a) The (𝜆, 𝜇)-linear-semiorder dimension of 𝔓 is the least cardinal 𝜆 such that 𝑅  is the intersection of 𝜆 linear-
semiorders which𝜇 of them are not linear orders. 
(b) The (𝜆, 𝜇)-linear-semiorder dimension of 𝔓 is the least cardinal 𝜆 such that there is a linear-semiorder 
embeddingof(𝑋, 𝑅 ) into a strict direct product of𝜆 linear-semiorders which 𝜇 of them are not strict linear orders. 
(c) The (𝜆, 𝜇)-linear-semiorder dimension of 𝔓 is the least cardinal 𝜆 such that there is a strong linear-
semiorderembedding of (𝑋, 𝑅 ) into a direct product of 𝜆 strong linear-semiorders which 𝜇 of them are not linear 
orders. 
The following corollary is an immediate consequence of Theorem 4.17. 
 
Corollary 4.18. Let 𝔊 = (𝑋, ≺) be a poset. Then the following statements are equivalent. 
(a) The (𝜆, 𝜇)-linear-semiorder dimension of 𝔊 is the least cardinal 𝜆 such that ≺ is the intersection of𝜆linear-
semiorders which 𝜇 of them are not linear orders. 
(b) The (𝜆, 𝜇)-linear-semiorder dimension of ≺ is the least cardinal 𝜆 such that there is a linear-semiorder 
embeddingof(𝑋, ≺) into a strict direct product of 𝜆 linear-semiorders which𝜇 of them are not strict linear orders.  
(c) The (𝜆, 𝜇)-linear-interval order dimension of 𝔊 is the least cardinal 𝜆 such that there is a strong linear-
semiorderembedding of (𝑋, ≺) into a direct product of 𝜆 strong linear-interval orders which 𝜇 of them are not 
linear orders. 
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