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On Hybrid Order Dimensions
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Abstract

Norbert Wiener [28] developed the concept of interval order to clarify the link between the notions of a
time instant and a time period. This was a problem on which Bertrand Russell [18] was working at the
time. Interval orders are especially essential in the study of linear-interval and linear-
semiorderdimensions. This kind of dimensions, which we refer to as hybrid order dimensions, provides a
common generalization of linear order and interval order (semiorder) dimension and is arguably the most
important measure of the complexity of ordered sets. As a result, they play a significant role in a wide
range of areas of pure and applied mathematics, graph theory, computer science, and engineering. In this
paper, we give three main results of the theory of hybrid order dimensions. More precisely, we obtain
necessary and sufficient conditions for a binary relation to have an interval order (resp. linear- interval
order, linear-simiorder) extension as well as a realizer of interval orders (resp. linear-interval orders,
linear-simiorders). In addition, we characterize the interval order (respectively linear-interval order, linear-
simiorder) dimension. Since the hybrid order dimension of a binary relation is less than its linear order
dimension, these results will allow for the development of more efficient algorithms in graph theory and
computer science.
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1 Introduction

Zeno's paradox posed for the first time the question of whether time should be represented by a discrete or a
continuous variable. The concept of a durationless temporal instant is quite sophisticated, the result of many
centuries of experimentation in response to Zeno's puzzle. Time has long been accepted as a structure isomorphic
to real numbers and since any experience has some duration, we've come to think of times as either durationless
instants or collections of such instants. As a result, it is standard practice to define time intervals using instant time
points and their precedence relationship (sets of instant time points). Russell, however, proposed to go the other
way around: temporal instants should be constructed from what he calls events. He wanted especially to derive, an
instant of time (or of a point on a line) from a period of time (or from an interval on this line). In his paper [28],
Wiener provides an axiomatic frame for Russell's problem in which instants can be defined. To do that, he defines
a precedence relation R defined on a set of events X satisfying the following condition:

Va,b,c,d € X, (a,b) €R, (c,b) & Rand(c,d) € Rimply(a,d) € R (¥)

where(x,y) € R means that x,y € X and Xtemporally wholly precedes y, ie., every time at whichx exists is
temporally precedent to any time at which y exists. Russell and Wiener postulate that for each x € X, (x,x) € R
holds. We shall call statement (x) the Russel/ - Wiener axiom. Intuitively the formula states that if a precedes b and
bis simultaneous with ¢, and ¢ procedesd, thena precedes d. The name interval order for these relations first
appeared by Fishburn [6], [7]. Interval orders are important special classes of strict partial orders that arise in
problems in graph theory, computer science, economics, psychology, biology, scheduling, and so on. For example,
interval orders and the graph theory associated with their incomparability graphs, also called interval graphs,
provide a natural model for the study of scheduling and preference models. Interval orders also have applications
in distributed computing (vector clocks and global predicate detection), concurrency theory (pomsets and
occurrence nets), programming language semantics (fixed-point semantics), data mining (concept analysis), etc.
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Generally, for many applications in computer science, the precise time of each event occurrence is usually
not needed, but what really counts is the precedence relation. In most of these cases, the precedence relation
holds for events aandb if aends beforeb begins, and thus according to this logic, we can construct a time model
where each event corresponds to an interval representing its duration. In this case, two events are incomparable if
their temporal durations overlap. By using the Russell-Wiener axiom, the transitivity of the precedence's axiom
and the notion of overlapping intervals allow us to infer information regarding the sequence of events.

Let's see an example which illustrates the use of interval orders in computer science. In scheduling modeled by
precedence constraints, we have several tasks, say, ty,t,, ..., t, which have to be executed by a number of parallel
processors py,py, ..., bp. We are assuming that all processors are identical, and all tasks are known in advance and
can be executed independently from each other. Each assignment of tasks to processors is called a schedute. The
sum of the processing times of the tasks, assigned to a processor, is the /fad of this processor and, the maximum
load of any processor is the /ngth of the schedule. Our strategy here is an optimal schedule, that is, a schedule of
minimal length. In the case where the precedence constraint is an interval order, Papadimitriou and Yannakakis
[16] showed that if tasks are put into a list sorted by non-increasing size of successorsets,’and whenever a
processor becomes idleit executes the leftmost unscheduled task in the list that is ready for execution, then one
obtains a schedule of minimal length (see also [20, Page 3]). Finally, if an interval order R represents the time
intervals for a given set of tasks, the breadth (the maximum size of an antichain in R) gives an upper bound on
how many tasks are running at thesame time. This has applications, for example, in register allocation on a
computer CPU.

On the other hand, it is commonly known that graphs are a powerful tool for modeling problems that arise in all
areas of our life. A graph G = (V,E) is called an intersection graph for a non-empty family F of geometric objects if
there is a one-to-one correspondence between FandV such that two geometric objects in Fhave non-empty
intersection if and only if their corresponding vertices inV are adjacent. Such a family of geometric objects is called
an intersection representation of the graph. One of the most important intersection graphs are that of intervals on
the real line and that of triangles defined by a point on a horizontal line and an interval or a unit interval on
another horizontal line. Intersection graphs have natural applications in several fields, including bioinformatics
and involving the physical mapping of DNA and the genome reconstruction.

A partially ordered set or poset, (X,<), consists of a set X together with an irreflexive and transitive binaty
relation< on it. A realizer of a poset(X, <) is a family of linear orders on X whose intersection is the binary relation
R. Szprilrajn [21] first proved that a realizer for a partial order R always exists. Dushnik and Miller [3] defined the
order dimension dim(R) of a poset(X,R)to be the minimum cardinality of a realizer. The concept of order
dimension plays a role that in many instances is analogous to the chromatic number for graphs. Spinrad [19]
believes that order dimension is a parameter that in some sense measures the complexity of a partial order. In fact,
various problems may be easier to solve when restricted to partial orders of small order dimension. There are
efficient algorithms for determining whether a partial order has at most two-order dimension. In 1982,
Yannakakis [29] showed that testing if a partial order has order dimension <k, where k = 3, isNP-complete.
Dimension seems to be a particulatly hard NP-complete problem. This is indicated by the fact that we have no
heuristics or approximation algorithms to produce realizers of partial orders that have reasonable size (for details
see [4], [8], [12], [19], [20], [26], [29]). The interval order dimension and semiorder dimension of a poset(X,R),
denoted idim(R)andsdim(R), are defined analogously to the order dimension but with interval orders and
semiorders instead of linear orders. Since strict linear orders are semiorders and semiorders are interval orders, we
trivially obtain that order dimension is an upper bound and interval dimension is a lower bound for semiorder
dimension. The dimension of acyclic binaryrelations R which are the intersection of orders from the same class
Phas been extensively investigated. In contrast, not much is known about dimension of acyclic binary relations
R which are the intersection of orders from different classes Pyand P,. Two main examples in this area are linear-
interval orders (resp. linear-semiorders) R, i.e., acyclic binary relations where R = R; N R, with R; being a linear
order and R, being an interval order (resp. semiorder). The linear-interval (resp. linear-semiorder) dimension is
defined analogously to the order dimension but with linear-interval orders (resp. linear-semiorders) instead of
linear orders (see [13], [17], [22] and [23]).

In this paper, we give three main results on: (i) the (linear-) interval order and (linear-) semiorder extensions of a
binary relation; (ii) the existence of a realizer of a (linear-) interval order and (linear) semiorder of a binary relation;
and (iii) the characterization of the (linear-) interval order and (lineat-) semiorder dimension of a binary relation.

*The successor set of a task ¢;,i € {1,2,...,n} be the set of tasks that can not start before t; is finished.
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These results give an analogue of the: () Szpilran extension theory for posets[21], (if) Dushnik and Miller
[3] measute of poset complexity (order dimension) and (itt) Hiraguchi [10], Ore [15] and Milner and Pouzet [14]
characterization of order dimension for posets, in the hybrid order case.

2 Notations and definitions

Let X be a non-empty universal set of alternatives and R € X x X be a binary relation on X. We sometimes
abbreviate (x,y) € R asxRy. An abstract system [27] is a pair (X,R), where X is a set and R is a binary relation such
that given x,y € X, xRy means that x dominatesy. We say that R on X is (i) reflexive if for each x € X, (x,x) € R; (ii)
irreflexcive if we never have (x,x) € R; (ili) asymmetric if for all x,y € X, (x,¥) € R = (y,x) € R; (iv) transitive if for all
x, v,z €X,[(x,z) € R and(z,y) € R] = (x,y) € R; (V) antisymmetric if for each x,y € X,[(x,y) € Rand(y,x) ER] > x =y;
(vi) total if for each x,y € X,x # ywehavexRy or yRx. Let B be the set of binary relations onX. The diagonal
relationdonX is defined by 4 = {(x,x) | x € X}. A unary operatorp is a mapping from BtoB. Thus, given a binary
relation R, p(R) € B is a binary relation. We first define the basic unary operator for binary relations. Given a binary
relation R, the asymmetric parfP(R) of R is defined as follows:

P(R) ={(x,y) €EX XX | (x,¥) €R and (y,x) & R}.
A closure operator is a unatry operator ¢ fromB toB that satisfies the following three properties: for all R, R'€
B,(a) R = ¢(R)(extensiveness); (O)R € R = @(R) S ¢(R)(monotonicity) and (c) @(@(R)) = @(R) (idempotence). For a
particular property P, a closure operation of Ris defined to be the smallest relation R, that contains R and has the
desired propertyP. Now, we provide two examples of closure operations. First, the fransitive closure of a relation Ris
denoted by R, that is, for all x,y € X, (x,y) € R if there existsm € N and 2, ..., z,, € X such that x = z, (z, z;.+1) € Rfor
allk €{0,...,m — 1}andz,, = y. Clearly, R is transitive and because the case m = 1is included, it follows that R
R.Secondly, the reflexive closure of R is defined as follows:

rc(R) =RUA.

The following combinations of properties are considered in the next theorems. A binary relation RonX is: (1) a
strict partial order if R is irreflexive and transitive; (2) a partial order if R is reflexive, transitive and antisymmetric; (3)
an snterval order if R is a strict partial order which satisfies the Russell-Wiener axiom; (4) a strong interval order (see |2,
Definition 3]) ifR is the reflexive closure of an interval order (R = rc(Q) where Q is an interval order); (5) a strict
linear order ifR 1is a total strict partial order and (6) a /near order if R is a total partial order. A subset Y € X is an R-
cycle if, for all x,y € Y, we have (x,y) € Rand (y,x) € R. We say that R is agyclic if there does not exist anR-cycle. A
binary relation R* is an exzension of a binary relation R if and only if R € R*and P(R) € P(R*). The (interval) order
dimension of a partially ordered set (X, <) is the leastA such that there arel (interval order) linear order extensions of
<whose intersection is<.

Since a linear order is a special case of an interval order and of a semiorder respectively, we conclude that a linear
order extension of a binary relation R is also an interval order as well as a semiorder extension of R. The converse
is not true. In the simple example which follows this can be confirmed.

Example 2.1. LetX = {x1,x;,x3,x,3be a set and letR; = {(x1, %), (x3, x4)}andR; = {(x1, x2), (x1, x3), (x2,%3)} be two
relations onX. Then, R, = {(xy, x2), (x3,x4), (x1,x4)}is an interval order extension ofRwhich is not a linear order
andR, = {(x1,x3), (x1, x3), (x5, x3), (x4, x3) His 2 semiorder extension ofRwhich is not a linear order as well.

Cerioli, Oliveira and Szwarcfiter in [2] gave a common generalization of interval order dimension and (linear)
order dimension of partial order <. We extend this generalization in acyclic binary relations as follows: An acyclic
binary relation R is called a /Znear-interval order if there exist a linear order L and an interval order Q such that
R=LnQ. In this direction, we call an acyclic binary relation a /Znear-semiorder if its transitive closure is the
intersection of a linear order and a semiorder (see [24]). Supposes = {S; | i € I} be a family of geometric objects. A
graph G = (V,E) is an éntersection graph if we can associate § toGsuch that each S; corresponds to a vertex in V and
(x,¥) € E if and only if the S; corresponding to x and y have non-empty intersection. That is, there is a one-to-one
correspondence between SandGsuch that two sets inS have non-empty intersection if and only if their
corresponding vertices in G are adjacent. Intersection graphs are vital from both theoretical and practical points of
view.An interval graph is the intersection graph of a family of intervals of the real line, called an interval model.
Let LyandL, be two distinct parallel lines. A permutation graph is the intersection graph of a family of line segments
whose endpoints lie on two parallel lines LjandL,. A trapezoid graph is the intersection graph of a family of
trapezoids ABCD, such that ABis onL;and CDonlL,.A point-interval graph (orPI graph) is the intersection graph of a
family of trianglesABC, such thatA is on LjandBC is on L,.Figure 1 illustrates aPI graphwhere L, is represented by
the top line and L, by the bottom line. Point-interval graphs generalize both permutation and interval graphs and
lie between permutation and trapezoid graphs.
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Figure 1: (a) A simple-triangle graph of G. (b) An intersection representation of G.

In fact, an acyclic binary relationR is called a /near-interval order if for each x € X there exists a triangle T(x) such that
xRy if and only if T(x) lies completely to the left of T(y).

In fact, the ordering of the apices of the triangles gives the linear order L, and the bases of the triangles give an
interval representation of the interval order I. Let K be a family of geometric objects on X and let LyandL; be two
horizontal lines in thexy-plane with Lyabove L,. Generally speaking, a binary relation Ron a set X is ¥ -order if for
each element x € X, there is a geometric object ¥ between L; and L, so that for any two elements x,y € X, we have
x < yin R if and only if¥ (x) lies completely to the left of K (y). The set {¥(x) | x € X}is called aX representation of
R. Linear-interval orders have a triangle representation and Linear-semiorders have a unit triangle representation.

We say that R is a(p, q)-linear-interval realizerof R, ifR is an interval realizer of R(R = NR) with p elements and
precisely q of them ate non-linear. In this case we say that R (p, q)-realize R. We define (p,q) < (p’,q) if(p,q) is
lexicographically smaller than or equal to (p',q'). A linear-interval dimension of an orderR, denoted bylidimi{R), is the
lexicographically smallest ordered pair (p,q) such that there exists a(p, q)-Ainear-interval realizer of R (see |2, Page
113]). Similarly, we define the notion (p, g)linear-semiorder realizer of R.

3 Main result

Szpilrajn's extension theorem shows that any irreflexive and transitive binary relation has an irreflexive, transitive
and total (strict linear order) extension (see Szpilrajn [21]). A general result of Szpilrajns extension theorem is the
following corollary.

Corollary 3.1. A binary relation Ron a set X has a strict linear order extension if and only if R is an acyclic binary
relation.

Proof. To prove the necessity of the corollary, we assume that R is acyclic. Then, R is itreflexive and
transitive. By Szpilrajns extension theorem R has a strict linear order extension R*. Since R € R we have that R* is a
strict linear order extension of R. To prove the sufficiency, let us assume thatR has a strict linear order extension
Q*Then, R is acyclic. Indeed, suppose to the contrary that there exist x,y € Xsuch that xRyandyRx. It follows that
xQ*x, a contradiction to the irreflexivity of Q*. The last conclusion completes the proof.

Szpilrajn's result remains true if asymmetry is replaced with reflexivity and antisymmetric (see [1, Page 64],
[9]), that is, every reflexive, transitive and antisymmetric binary relation has a linear order extension. We generalize
this result as follows:

Definition 3.1. A binary relationR on a set X is #ransitively antisymmetric if and only if R is antisymmetric.

Proposition 3.2. A binary relation R on a set X has a linear order extension if and only ifR istransitively
antisymmetric.

Proof. To prove the necessity of the proposition, we assume that R is transitively antisymmetric. Then, R is
transitive and antisymmetric. Then, by Arrow [1, Page 64] and Hansson [9], Rhas a linear order extension.
Therefore,R has a linear order extension. To prove the sufficiency, suppose that R has a linear order extension.
IfR is not transitively antisymmetric, then there are x,y € X such that (x,y) € R,(y,x) € Rand x #y. But then,
(x,¥) € Q,(¥,x) € Qandx # y which is impossible by the antisymmetry of Q.The last contradiction shows thatR is
transitively antisymmetric.

To continue the study on the interval order dimension let us make the following assumption.

Negative interval order assumption. Let a binary relation RonX be given. Then, there exists x,y,a,b € X such that
(x,a) €R,(b,y) €R,(b,a) & Rand(x,y) & Rhold. The set

Dr = {((x,y),(a,b)) € X? x X? | (x,a) €R,(b,y) ER,(b,a) &€ Rand (x,y) & R}
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is called the negative interval order assumption set with respect toR.
Negative semiorder assumption. Let a binary relation RonX be given. Then, there exists x,y,z,w € X such that (x,y) €
R,(y,z) ER,(x,w) & R and (w,y) € R hold.

Remark 3.3. If a binary relationR is assumed to satisfy the negative interval order assumption generalizes the 2 +

2rule and if it is assumed to satisfy the semiorder assumption is equivalent to fulfil the 3 + 1 rule. In this paper, we
use the first notation which is more convenient for presentation of proofs.

a &
I I w e Yy
b d

Figure 2:R satisfies the negative interval order assumption (ot the 2 + 2 rule) iff a restriction of it is isomorphic to (a) and it satisfies the
negative semiorder assumption (or 3 + 1 rule) iff a restriction of it is isomorphic to either (a) or (b).

N
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Lemma 3.4. LetRbe an acyclic binary relation on a setX, which does not satisfy the negative interval order
assumption. Then,Ris an interval order extension ofR(not necessatily strict linear order).
Proof. By definition,R € RandRis transitive. Since Ris acyclic, we also seethatR is irreflexive. To complete the proof,
weonly need to verify thatRsatisfies the Russell-Wiener axiom. In fact, sinceRdoes not satisfy thassumption of the
negative interval order, we are led to conclude that for allx,y,a,b € X, which satisfyxRa, bRyand(b, a) ¢ R,we
have(x,y) € R. Let nowzw,c,d € Xsuch thatzRc,dRwand(d,c) € R.'Then, there exist natural numbersy, vand
alternativessy, sy, ..., S, t1, ta, ..., tysuch that

ZRs1Rs; ... Rs,Rc and dRt,Rt, ... Rt, Rw.
But then,s,Rc, dRtjand(d, ¢) € Rimply that(s,, t;) € R.It follows that(z,w) € R.Hence,Ris an interval order extension
ofR.

Theorem 3.5.A binary relationRon a set X has an interval order extension (not necessarily a strict linear order) if
and only ifRis acyclic.
Proof. Let us prove the necessity of the theorem. We assume that R is an acyclic binary relation defined in a setX. If
R is an interval order(ifx,y,a,b € Xsuch thatxRa, bRy, (b,a) ¢ R =R, then (x,y) € R), then there is nothing to
prove.Otherwise,Dy # @. That is, there existsx, y,a,b € Xsuch thatxRa, bRy, (b, a) € Rand(x,y) ¢ R.We put
R =RU{(x,y) € X x X | 3a,b € X such that xRa, bRy and (b, a) ¢ R}.
Cleatly,R'is irreflexive andR c R'.To verify thatR'is acyclic, take anyz € Xand suppose that(z,z) € R. Then, there
exists a natural number m and alternativesxy, x, ..., x,,, such that
z= le'xz ...R'xm_lR'xm =z
SinceRis acyclic, there is at least onek € {1,...,m — 1}such that(x;, x41) = (x,y)with (x,y) € R'\ R. Let x;-be the first
occurrence ofxand letx;sbe the last occurrence ofy. Clearly, for all k €{1,..,m—1}, if (x;,xx41) # (x,y) then
(x, x¢+1) € R. Then,
y = xpRxp 41 .. RZRX1 ... RXp» = x.
It follows that(y,x) € Rwhich jointly with(x,a) € Rand(b,y) € Rimplies that(b,a) € R, causing an absurdity.
Therefore,R'is acyclic. On the other hand, ifR'does not satisfies the negative interval order assumption, then
Lemma 3.4 implies thatRis an interval order extension ofR, which ends the proof of the necessity of the theorem.
Otherwise, we proceed by assuming that R satisfies the negative interval order assumption.
Now, let us

€ ={Q S X x X | Qis an acyclic extension ofR which satisfies the negative interval order assumption}.

We haveR' € &, so this class is not nonempty. LetC = (Qg)gepbe a chain infand letQ = UgegQq.Then, § € E.
To prove it, we first show thatQis acyclic (resp. irreflexive). Take(x,x) € Q (resp. (x,x) € Q)for somex € X. Then,
since € is a chain, there exists anQy- € C,6* € Osuch that(x,x) € Qp- (tesp.(x,x) € Qg-). This is impossible due to the
acyclicity (irreflexivity) of Qg-. Therefore, Q is itreflexive and acyclic. On the other hand, we assume thatQsatisfies
the negative interval order assumption, because otherwise Lemma 3.4 implies that( is an extension of the interval
order of R, which ends the proof of the necessity of the theorem. SinceR c Qwe have thatQ € €. Therefore, any
chain in € has an upper bound in€ (with respect to set inclusion). By Zorn's lemma, there is a maximal element
Q*in€. We prove that Q* is an interval order extension ofR. Cleatly, Q* is an irreflexive and transitive extension of
R. It remains to prove that Q* satisfies the Russell-Wiener axiom.
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We proceed by way of contradiction. Suppose thete arex,y,a,b € X such that (x,a) € Q%, (b,y) € Q%,(b,a) &
Q*and (x,y) € Q*. Then, Q* o Q* is an acyclic extension of R which satisfies the negative intetval order assumption,
a contradiction to the maximal character of @*. Clearly, in any case of proof, the extension of the intervalR is not
required to be of linear order. Thus, the last contradiction completes the necessity of the theorem.

To prove the sufficiency, let us assume thatR has a not necessarily linear interval order extension Q*.Then,
R is acyclic. Indeed, suppose to the contrary that there exist x € X, a natural number m and alternatives xy, Xy, ..., Xp,
such that
XRx1Rx;, ... Rxp, Rx.

Since Q* is transitive and R € Q*,we havexQ*x, a contradiction to irreflexivity of Q*. The last conclusion
completes the proof.

Corollary 3.6. A binary relationR on a set X has a strong interval order extension ((not necessarily a linear order) if

and only if R is transitively antisymmetric.

Proof: To prove the necessity of the corollary, we assume that R is transitively antisymmetric. Then, R \ 4 is acyclic.

By Theorem 3.5, R \ 4 has an interval order extension R*. Then, we have
RSR=(R\A)URNA) SR URNAL) SR UA.

Therefore, Q =rc(R*) = R* U 4 is a strong interval order extension of R. To prove the sufficiency, let us assume

that R has a strong interval order extension Q .Suppose on the contrary, that there are x,y € X such that (x,y) € R,

(y,x) €R and x # y. It follows that (x,y) € Q,(y,x) € Q and x # y which is impossible by the asymmetry ofQ \ 4.

The last contradiction completes the proof.

Theorem 3.7. A binary relation R in a set X is a linear interval order if and only if R is acyclic.
Proof. To prove the necessity of the theorem, let us suppose that R is an acyclic binary relation defined on a set X.
By Theorem 3.5 there exists an interval order extension Q of R (Q is not necessarily a strict linear order). Then,
R € Q which implies that Q is an interval order extension ofR.
We put

R*=RU{(x,y) XXX | (y,x) €Q\R}

Since R is acyclic and Q is irreflexive, we have R* is irreflexive. If Q = R, then R* = R. By the Szpilrajn theorem, R
has a strict linear-order extension L. It follows that R = @ n L which implies that R is a linear-interval order. Now
suppose Q \ R # 0. We now prove that R* is acyclic and thus is an acyclic extension of R. Indeed, suppose to the
contrary that there are alternatives v, zy, zy, z, ..., z,, € X such that
v =2yR*z;1R*z, ..R*z, = v.
SinceRr is acyclic, there is at least one k € {0,1, ..., m — 1}such that (z,,z,.1) = (x,¥). Let z,- be the first occurrence of
x and let z)- be the last occurrence of y. Then,
y = z3*Rzy«41 ..Rz, =v = ZyRz1R ... Rz~ = x.
It follows that (v,x) € R, a contradiction to (y,x) € Q \ R.
Suppose that R ={R; | i € I} denotes the set of acyclic extensions of R such that (x,y) € R;\ R if and only if
(y,x) € Q \ R. Since R* € R we have that R # 0. LetC = (C))ie; be a chain in R, and let € = U;;C;. We prove that
C € R. To prove thatC is acyclic suppose to the contrary that there exists g, so, 51,52, ..., Sp € X such that
U =59Cs.Csy ...Cs, = p.
SinceCis a chain, there exists i* € Isuch that
1= 50C;51C;r52 ... CirSy = U4,
contradicting the acyclicity of ;-. On the other hand, it is easy to check that (x,y) € € \ R implies (y,x) € Q \ R.
By Zorn's lemma R possesses an element, say R, that is maximal with respect to set inclusion. We have two cases
to consider: Ris total or not. If R is total, then R is a strict linear order extension of R. Then, R = Q n R. Indeed,
since R € Q N R, one needs only to prove that Q N R € R. Let to the contrary be (x,y) € Q N Rand (x,y) € R. The
(x,y) € Q \ R which implies that (y,x) € R, a contrsdiction to asymmetry of R (irreflexive and transitive). Therefore,
R =Q nRIfRis not total, then there existsx,y € X such that (x,y) € Rand(y,x) ¢ R. It follows that (x,y) ¢ Rand
(y,x) € R. But then, (x,y) ¢ Qand (y,x) € Q, because otherwise (x,y) € Q\ R or (y,x) € Q \ R which implies that
(y,x) € Rot (x,y) ¢ R which is impossible. SinceR and transitive, by the Szpilrajn theorem there exists a strict linear
order extensionR of R. Since (R\R)NQ =@ we conclude that Q n R = R.The last conclusion shows that R is a
linear-interval binary relation. The converse is similar to the proof of the converse of Theorem 3.5.
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Theorem 3.8. A binary relation R on a setX has a semiorder extension if and only if R is acyclic.
Proof. LetR be an acyclic binary relation onX. By Theorem 3.5 has an interval order extension Qof R. Put
Q*=QU{(x,w) EXXX\A| there existy,z € X such that
xy)€Q (2)€Q (x,w)g&Qand (w,2) ¢ Q}=QUT.
Clearly,Q* is irreflexive. We prove that Q* is transitive. Indeed, let a,b,c € X such that (a,b) € Q*and (c,d) € Q*.
Then, we have four cases to consider:
Case 1,.(a,b) € Q and(b,c) € Q. Then, (a,c) € Q € Q*.
Case 2,.(a,b) € Q and(b,c) € T.Therefore,(a,b) € Q and  there  existsk,m,A € Xsuch  that(b,x) € Q, (i, A) €
Q,(b,c) ¢ Qand(c,2) ¢ Q. From(a,b) € Q and(b,x) € Qwe have that(a,k) € Q. If(a,c) € Q € Q*we have nothing
toprove. We suppose that(a, ¢) € Q. Then, from(a, k) € Q, (k, 1) € Q,(a,¢) ¢ Qand(c, 1) € Qwe conclude(a, ¢) € Q*.
Case 3,.(a,b) € Tand(b,c) € Q.In this case, we have(b,c) € Q and there existsk,A € X such that(a, k) € Q, (x,1) €
Q,(a,b) € Qand(b, ) ¢ Q. Since(x, 1) € Q, (b,c) € Q and(b, 1) & Q we conclude that(x,c) € Q which jointly to(a, k) €
Q implies that(a,c) € Q € Q™.
Case4,.(a,b) € Tand(b,c) € T. In this case, there arex,4,v,u € Xsuch that(a,x) € Q,(x,1) € Q,(a,b) € Q,(b,1) ¢
Qand(b,u) € Q,(uwv) €Q, (b,c) & Qand(c,v) € Q.If(a,c) € Q € Q*, then we have nothing to prove. Suppose
that(a,c) € QIf(c,2) € Q, then from(a,x) € Q,(x,A) € Q and(a,c) ¢ Q we conclude that(a,c) €T € ¥ Otherwise,
if(c, 1) € Q, then we have two subcases to consider when(a, ) € Q ot notlf(a,u) € Q, then from(m,v) € Q, (a,c) & Q
and(c,v) € Q we have (a,c) €T < Q*. On the other hand, if(a,x) ¢ Q,then(b,u) € Q,(a, k) € Q implies that(b, k) €
Qwhich jointly to(x, 1) € Q implies that(b, 1) € Q which is impossible. Therefore, in all possible cases(a, ¢) € Q*which
implies thatQ*is transitive.
To prove that Q* is an interval order we have four cases to consider.
Case 1g. (a,b) € Q,(c,d) € Qand (¢,b) ¢ Q* 2 Q. Since Q is an interval order, in this case It is clear that (a,d) € Q <
Q.
Case 2g.(a,b) € Q,(c,d) € Tand(c,b) ¢ Q* 2 Q. In this case, there arek,A € X such that(c,k) € Q,(x,2) € Q,(c,d) ¢
Q and(d, 1) € Q. Then, from(a,b) € Q,(c,k) € Q and(c,b) € Q we conclude that(a, k) € Q.If (a,d) € Q € Q* then we
have nothing to prove.lf(a,d) € Q, then from(a,x) € Q, (x,2) € Q,(a,d) ¢ Q and(d, 1) € Q we have that(a,d) € T < Q*.
Case 3p.(a,b) €T, (c,d) € Qand(c,b) € Q* 2 Q.In this case, we have(c,d) € Q and there existsk, 1 € X such that(a,x) €
Q,(x, ) €Q,(ab)eqQ (bA) e Qand(c,b) ¢ Q* 2 Q.If(a,d) € Q € Q*, then we have nothing to prove. Let(a,d) € Q.
I1f(d, 2) ¢ Q,then(a, k) € Q,(x, 1) € Q implies(a,d) € T € Q*. Otherwise, (d,A) € Q which jointly to(c,d) € Q,(c,b) &
Q, (b, 2) ¢ Qimplythat(c,b) € T € Q*, a contradiction. Therefore,(a,d) € T € Q*.
Case 4g.(a,b) €eTand(b,c) €T. In this case, there arex,A,v,u € X such that(a,x) € Q,(x,2) € Q,(a,b) & &b, 1) &
Q(cweQ wv)eQ, (c,d ¢Qand(c,v) ¢ Qand(c,b) € Q* 2Q.If(a,d) eQ €Q*, then we have nothing to
prove.Let(a,d) ¢ Q. 1f(d, 1) ¢ Q, then from(a,k) € Q, (k,4) € Qand(a,d) € Qwe conclude(a,d) €T < Q*. If(d, 1) €
Q,then we have two subcases to consider:(4,)(a, i) € Q and(4y)(a, 1) € Q.If(a,n) € Q, then from(u,v) € Q,(a,d) &
Qand(d,1) € Qwe conclude that(a,d) €T < Q*. If(a,u) ¢ Q, then from(c,m)€ Qand(a k)€ Qwe conclude
that(c, k) € Q. But then,(c,k) € Q,(x,2) € Q,(c,b) € Q and(b, ) ¢ Q implies that (c,b) € Q*anabsurdity. Hence,
(a,d) € Q*. Therefore, Q*is an interval order.If Q* does not satisy the negative semiorder assumption, then Q*is a
semiorderextension ofR and the proof is over. Otherwise, Q*satisfies the negative semiorder assumption. Now, let
€ ={Q € X x X | Qis an interval order extension of R which satisfies the negative semiorder assumption}.

We have Q* € &, so this class is nonempty. Let € = {(C’,é)nEH[) li€ I} be the family of chains in €. If ¢} = (Qf)je/ is
a chain in € such that § = U;¢; Q; does not satisfy the negative semiorder assumption, then Q is a semiorder
extension ofR. Otherwise, for each i € I,U, ¢y, C € € holds. By Zorn's lemma, there is a maximal element Q*in €.
We prove that Q* is a semiorder extension of R. Indeed, suppose to the contrary that Q* is not a semiorder. Then,
thereexistx, y,w, z € X such that (x,y) € 0%, (y,2) € 0%, (x,w) & 0*and(w, z) ¢ §*. But then, the relation
0*=0"u{(x,w) EXx X\ 4| there exist y,z € X such that (x,y) €
Q",(v,2) € Q*, (x,w) ¢ Q" and (w, 2) ¢ Q}

belongs to &, a contradiction to the maximal character ofQ*. Therefore, Q* is a semiorder extension of R. The
converse is evident.

The following theorem is proved in a similar way to the proof of Theorem 3.7.

Theorem 3.9. A binary relationR on a set X is a linear-semiorder if and only ifR is acyclic.

4 Hybrid order dimension

Today, dimension theory is a strong advancement in graph theory and computer science. This is documented in
the recent book by Trotter [25], which provides a comprehensive survey.
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The notion of dimension of a poset(X,<) was introduced in a seminal paper by Dushnik and Miller [3] as the
leastd such that there are 2 linear extensions of < whose intersection is <. Equivalently, the dimension of < is the
dimension of the Euclidean space R* in which (X, <) can be embedded in such a way that x < y if and only if the
point ofx is below the point of ywith respect to component wise order (see Ore [15]). In a more general context,
we often have a class R of objects, e.g., acyclic binary relations, graphs, digraphs, specific kinds of them, etc.- and
a subclassC of R such that every R € R is either equivalent to the intersection of a number of C; € € or can be
embedded into a product [[;«;C; with C; € C andA being a cardinal number. Then it is natural to regard the
necessary number of €, as a measure of complexity ofR, called the dimension ofR with respect to € and R.

The following theorem is a generalized result to that of Dushnik and Miller, and it is a key result for the study of
the interval order dimension.

Theorem 4.1. Let (X, R) be an abstract system. Then, R has as a realizer the set of interval order extensions ofR if
and only if R is acyclic.
Proof. To prove the necessity, letR be an acyclic binary relation on X and let @ be the set of all interval order
extensions ofR. By Theorem 3.5, the family of such extensions is non-empty. We show that R = Ny Q. Cleatly,
R € NgegQ- Therefore, we have only to show that Npep@ S R. Suppose to the contrary that there exists a pair
(a,b) € NgegQbut (a,b) & R. We first show that (b,a) & R. Indeed, if we suppose, for the sake of contradiction, that
(b,a) €R, then we have (/) € Q = Q. This contradicts the fact thatQ is asymmetric (irreflexive and transitive).
Therefore, a, b € X ate non-compatable with respect to R. Put
R =RU{(b,a)}

It is easy to check that R’ is acyclic ((a, b) € R). By Theorem 3.5, R" has an interval order extension Q*. Therefore, R
has an interval order extension Q* such that (b, a) € @, a contradiction to the asymmetry of Q*((a, b) € Ngeg@ SQ).
The last contradiction proves that R = Nyeq Q.
To prove the sufficiency of the theorem, let R = Ngeg@Q, whereQ is a family of interval order extensions ofR.
Then,R is acyclic. Indeed, suppose to the contrary that there are alternatives x, xo, xq, ..., X, € Xsuch that

x = xgRx1R ...Rx,, = x.
Since Q is a transitive extension of R, we have xQx, a contradiction to irreflexivity of Q. Therefore, R is acyclic. The
last conclusion completes the proof.
The following corollary is a consequence of Theorem 4.1.

Corollary 4.2. Let (X,R) be an abstract system. Then, R has as realizer the set of strong interval order extensions
of R if and only if R is reflexive and transitively antisymmetric.
Proof. To prove the necessity, let R be reflexive and transitively antisymmetric. Then, R \ 4 is acyclic. By Theorem
4.1, we have that R\ 4 = NgegQ, where Q is an interval order. Therefore, R = Ngepre(Q) where rc(Q) is a strong
interval order. Conversely, suppose that R has as realizer the set 9* of strong interval order extensions of R. If
Q* € 0%, then Q*\ 4 is an interval order. If we suppose that R is not transitively antisymmetric, then we conclude
that Q*\ 4 is not asymmetric, which is a contradiction. Therefore, R is transitively antisymmetric. On the other
hand, since 4 € Ng-eo-Q* = R, we see that for all x € Xthere is (x,x) € R. Thus, here are alternatives x, xo, X, ..., X, € X
such that

x = xgRx;R ... Rx,, = x.
Since R is transitively antisymmetric, we conclude that x = xy = x; = -+ = x, which implies that (x,x) € R. Hence, R
is reflexive.
Moreover, ifR is transitive, then as immediate consequences of Theorem 4.1 and Corollary 4.2 we have the
following results.

Corollary 4.3. A binary relation R has as realizer the set of its interval order extensions if and only if R is a strict
partial order.

Corollary 4.4. A binary relation R has as realizer the set of its strong interval order extensions if and only if R is a
partial order.
The following result is a generalization of the theorem of Dushnik and Miller [3].

Theorem 4.5. Let (X, R)be an abstract system. Then, R has as realizer the set of strict linear order extensions of R
if and only ifR is acyclic.

Proof: Let R be an acyclic binary relation on X. Then, (X,R) is a poset. By ([3, Theorem 2.32] we have that the
family Q of strict linear order extensions of R is a realizer ofR. That is, R = Ngeg@Q. Since R € Rand R € Qimply
R c Q = Q, we have that the family of strict linear order extension of R coincides with the family of strict linear
order extension of R.
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Conversely, suppose that R has as realizer the set of strict linear order extensions of R,Q. Then, R = NyeoQ.Since
NgegQ is irreflexive, we conclude that R is acyclic.

By analogy to the proof of Corollary 4.2 of Theorem 4.1, we can prove the following corollary from Theorem 4.5.
Corollary 4.6. Let (X, R)be an abstract system. Then, R has as realizer the set of linear order extensions of R if and
only if R is reflexive and transitively antisymmetric.

Moreover, if R is transitive, then as immediate consequences of Theorem 4.5 and Corollary 4.6 we have the
following results.

Corollary 4.7. Let (X, R) be an abstract system. Then, R has as realizer the set of strict linear order extensions of R
if and only if R is transitive and asymmetric.

Corollary 4.8. Let (X, R) be an abstract system. Then, R has as realizer the set of linear order extensions ofR if and
only if R is reflexive, thansitive, and antisymmetric.
The following two theorems are proved in a similarway to the proof of Theorem 4.1.

Theorem 4.9. Let (X, R) be an abstract system. Then,R has as realizer the set of lineat-interval order extensions of
R if and only if R is acyclic.

Theorem 4.10. Let (X, R) be an abstract system. Then, R has as realizer the set of linear-semiorder extensions of
Rif and only if R is acyclic.
As we mentioned above, Ore [15] defined order dimension of a poset? = (X, <) as the least cardinall (see also
Hiraguchi [10] ) such that there is an order preserving embedding of (X, <) into a direct product
dpc(P) =@ {(X, <) | i < ([Tica X', <g)ofA linear orders <; (i < A),where <, is defined by
(*)i<s <o Wi)i<a if and only if x; <; y; holds for all i < A.
On the other hand, Milner and Pouzet [14] proved that the dimension of a poset? is equal to the least cardinal
Asuch that there is an order preserving embedding of (X, <) into a strict direct product
spe(®P) =0 {(X, <) 1 i < 2} = ([Ti<a X', <s)ofA strict linear orders <; (i < 1), where <s is defined by
(x)i<a <s Wiz if and only if x; <; y; holds for alli < 2.

In order to give general results concerning those of (interval) order dimension, we extend the notions of order
preserving embedding, componentwise order and (strict) direct product of a partial order to arbitrary binary
relations.

In the following, for the sake of maintaining uniformity of notations, for any abstract system (X,R)we denote
<g= P(R)and <p= P(R) U 4 = rc(P(R)). Clearly, if R is acyclic, then <z= Rand <p=rc(R).

Definition 4.1. A mapping from an abstract system (X,R) to an abstract system (X "R is called an dominance-
preserving embedding if it respects the dominance relation, that is, all x,y € X are mapped to x',y" € R such that xRy if
and only if x'R'y'. Let 1 € X be a cardinal number and let R = {(X;,R;) | i < A}be a family of abstract systems. The
strict componentwise dominance relation of R is a binary relation S(R) on the Cartesian product [];; X' such that given
(i<t @i<a € [licaX', we have
(x)i<a <sw) W)i<a if and only if x; <p, y; foralli < A.

The componentwise dominance relation of R is a binary relation Q(R) on the cartesian product [[;<,X* such that given
(i<t Wdi<a € [lica X', we have

(*)ica <oy W)ica if and only if x; <p, y; for eachi < A.
The strict direct product of a familyR = {(X;,R;) | i < AJof abstract systems, denoted by® {(X,R;) |i <A}, is the
Cartesian product [[;<; X‘equipped with the strict componentwise dominance relation <g).In this case, we write
(X, <sy) =O{(X,R) | i < BwhereX = [;<a X', The direct product of a familyR = {(X;,R)) | i < A}of abstract systems,
denoted by® {(X,R;)) | i <A}is the Cartesian product [[;<;X'equipped with the componentwise dominance
relation<y ). In this case, we write(X, <gm)) =® {(X,R;) | i < Jwhere X = [J;1 X".
In case of (strict) partial orders, the notions of dominance-preserving embedding, componentwise dominance
relation and (strict) direct product of an abstract system coincide with the notions of order-preserving embedding,
componentwise order and (strict) direct product of linearly ordered sets, respectively.
We now extend the notion of order dimension to study the problem of (interval) order dimension in a general
form.
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Definition 4.2. Let ® = (X, R) be an abstract system. The (interval order dimension) order dimension (idim(R))dim(R) of
(X,R) is the least cardinal Asuch that there are A (interval order) strict linear order extensions of R whose
intersection is the transitive closure RofR.

Note that this definition coincides with the classical one when R is transitive.

The following theorem generalizes the well-known results of Hiraguchi [10], Ore [15] and Milner and Pouzet [14].
Theorem 4.11. Let ® = (X,R) be an abstract system where R is acyclic. Then the following statements are
equivalent.
(a) The order dimension of R is the least cardinal A such that R is the intersection of2 strict linear ordets.
(b) The order dimension of R is the least cardinal A such that there is a dominance-preserving embedding of
(X, R)into a strict direct product of2 strict linear orders.
(c) The order dimension of R is the least cardinal 1 such that there is a dominance-preserving embedding of
(X, R)into a direct product of 1 linear orders.
ProofStep 1 (dimifR) = spciR)). Suppose that R = (X, R) has order dimension A. Therefore, R = N;; £L; where £;are
strict linear orders onX. Let 8={(X,£L;)1i<A}. We define the map f:(X,R) — ()? <5(§)) =0{(x.L) i<
Aby f(x)=rii<d where x/=x for all /<A Since the ordering <5(€) is defined on &by
(x)i<a <s@)Wii<a if and only if x;Z;y; holds for alli < 2,
we have
xRy & (vi)x;Liy; & (Vi)xLiy & f(x) <s@) fO)
Step 2 (spci®R) = dpc(R)). To prove this fact, it suffices to show that the strict direct product (X, <5(§)) =0
{(x,L;) 1 i < 2} of the strict linear orders £; can be embedded into a direct product of linear orders. Indeed, let for
each i < 2, £; denote the ordering on X = [];<; X' defined by
(% ),' L (v )j § Aifandonlyifeitherxiﬁiyi otx; = y;andy, £, x, where
y =min{B | x5 # yg}.
Clearly, L;is reflexive ({8 | x5 # y3} = ), antisymmetric and transitive on X. We prove that £; is also total on X.
Suppose that x;L;y; is false. Since L; is total, it follows that
[ y) € Linxg =y V[ y) € Lin(vy,x,) € £,y = min{B | x5 # yp}]
= [(yiflixl-)] v [(yiflixi) A (xyﬁyxy)] v [(yi =x)A (xyﬁyxy)] =AVBVC.
In all cases A, B and € we have y,L;x;. It follows that £; is a linear order extension of <gg). We prove that (X, <5(ﬁ))
is embedded in the direct product ()? <Q(Q)) =@ {(X,£;) 1i<2), where & ={(X;,£) i< AJandX = [[o; Xi.Letk =
(x)icxwhere x; =xfor alli<A. We claim that(X, <S(§))is embedded in the direct product (X:’ , <Q(g))by the
mappingf (%) = (%;);<ywherex; = ¥foralli < A. Indeed, if  X<5q ¥, then x;Liy;and SOXL;§ for
alli < 2. Therefore,f (%) <qe) f(#). Conversely, iff(%) <gw) f(F), thenk¥#y andxf;y for alli <A Therefore,
citherx; L;y; orx; = y;for alli < A. Ifx; = y;then there is somey < Asuch thaty,£,x,andy = min{g | x; # y5}. On the
other hand,®£;§for alli < Aimplies that¥£, ¥ and thus x, £,y,.SinceZ,is transitive, x, £, y,andy, £, x,imply thatx, £, x,,
a contradiction to irreflexivity of £, Therefore, x;£;y;for alli < A. It follows that¥ <s(z) ¥ The last conclusion shows
that
X <s@) ¥ © (R <qo .

Step 3 (spc(R) = dim(R)).Suppose that spc(R) = A. By definition, 1 is the least cardinal such that there is a
dominance-preserving embedding f of (X, R) into a direct product (X, <qem)) =® {(X,M}) | i < 1}, where each M; is
a linear order, M = {M; | i < 2} and <q (g is defined by
(xi)i<l SQ(EUI) (yi)i</1 if and Ol‘]ly ifxi SMi Vi holds for all i < A.
Then, by supposition we have
xRy & f(x) <o) fO)
If f(x) = (x))i<a, we writef; (x) = x;. Then, for each i < 1define a linear orderC; onXby
xC;y if and only if eitherf;(x) # f;(y)and f;(x) <y, f;(y)hold or
fi(x) = fi() and f; () <pq, f; (x), where
j=minfk <11 fi(x) # fi )}

We prove that

f(x) <qamy fFO) & (Vi < D)(xC;y).
Indeed, letf(x) <o f(¥), thenx # y and thus for alli <, we have f;(x) <j;, f;(»)and f;(x) # f;(¥). Therefore, for
alli < A2we havex ¢;y. Hence,

f(x) <qamy fO) = (Vi <) (xCy).
Conversely, letxC;yfor alli < A. Then, either(a) f;(x) # f;(y)and f;(x) <p;, f; (W) or(d) f;(x) =
fiy)and £; () <aq, f; (x),wherej = min{k < 41 fi.(x) #f (7)}hold.Supposethat f; (x) = f;(y)forsomei <
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A Then,f; () <, f; (x),wherej = min{k <11 fi.(x) # fi ()} SincexGy and f;(x) # f; (y)we havef; (x) <u;, fj(»).By the
antisymmetry of<,;, we havef; (x) = f; (y)which is impossible by the definition ofj. The last contradiction shows
that for alli < Awe have f;(x) # f;(y)and f;(x) <a;, f;(¥). It follows that

(Vi <D(Cy) = (Vi <L) # i) A(fi(x) <ae, i())] = (Vi<

D(fi(0) <ar, i) = (Vi < D(x <ae, ¥i) = (dica <gamy Widica =

&) <qamy FO).
The last conclusion implies that,
f(x) <qamy f() © (Vi < D)(xC;y).
Therefore,
xRy & f(x) <qam) fO¥) © (Vi < D)(xCy).

Since R is acyclic, the last implication implies that R = N;<; (C; \ 4), where for all i < 4,C; \ 4 is a strict linear order.
Because of the three steps above we conclude that dim(R) = spc(R) = dpc(R), and the proof is complete.
As an immediate consequence of Theorem 4.11, we have the following corollary which is the main result of [14].

Corollary 4.12. Let § = (X, <) be a poset. Then the following statements are equivalent.

(a) The order dimension of § is the least cardinal 2 such that < is the intersection of 4 strict linear orders.

(b) The order dimension of § is the least cardinald such that there is an embedding of (X,<) into a strictdirect
product of Astrict linear orders.

(c) The order dimension of § is the least cardinal A such that there is an embedding of (X, <) into a directproduct
of 2 linear orders.

An alternative definition of the interval order < defined in X can be made by assigning to each elementx € X an
open interval I, = (ay, b,)of the real line, such that x < yin X if and only if b, < a,. Such a collection of intervals is
called an énterval representationof <. Let A € Rbe a cardinal number and let 3 = (I;);<; be a family of interval orders.
We denote by [ithe interval order representation of each interval order I;.Let (al,bl) be an interval corresponding
to x € X in the representation of I, With x € X we associate the box [];<;(al,bi) € R*. Each of these boxes is
uniquely determined by its upper extreme corneru, = (bg), _, and its lower extreme comerl, = (at),_,. Such an assignment
is called a box embeddingofX. For the interval order dimension, the box embedding plays the role of the point
embedding inR* introduced by Ore. The projections of a box embedding on each coordinate yields an interval
order (see [5]).

To approach the interval orders analogue of the Hiraguchi [10], Ore [15] and Milner and Pouzet [14] results for
posets, in a first step the concepts of direct product and strict direct product have to be generalized from linear
orders to interval orders on X. The direct product of a family ® = {(X;,<;) | i <2} of strong interval orders is the
Cartesian product [[;<; X" equipped with the ordering <4 ) defined by
x <o) yif and only if either b} < a}, or a = a},b; = b} holds for all i < 4.
The strict direct product of a family 6 = {(X;,<;) | i <} of interval orders is the Cartesian product [];<;X" equipped
with the ordering <, defined by
x <) ¥ if and only if b < a} holds for alli < 2.

Definition 4.3. Let B = (X, R) be an abstract system. (1)We call idpc(P), the least cardinal 1 such that there is a box
embedding of (X,R) into a direct product of 2 strong interval orders. (ii) We call spc(P) the least cardinal 2 such
that there is a box embedding of (X, R) into a direct product of 1 interval orders.

Theorem 4.13. Let B = (X,R) be an abstract system where R is acyclic. Then the following statements are
equivalent.
(a) The interval order dimension of P is the least cardinal A such that R is the intersection of A interval orders.
(b) The interval order dimension of P is the least cardinal A such that there is a box embedding of (X,R) into a
strictdirect product of 2 interval orders.
(c) The interval order dimension of P is the least cardinal A such that there is a box embedding of (X,R) into a
direct product of A strong interval orders.
ProofStep 1 (idim(B) = ispc(B)). Suppose that P = (X,R) has interval order dimensiond. Therefore, R = N;o; <;
where <; are interval orders onX.Let 7 = {IL | x € X}, where IL = (al,b}) be an interval representation of<;.Let also
X =[li;X'and © ={<li<1}. We define the map f:(X,R) — (X <S(ﬁ)) =0 {(X, <) | i < A3byf (x) = [i<s(ak,b}).
The ordering<ys,)is defined by

f(x) <5(5))f ) if and only if bi < @}, holds for all i < A.
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Therefore,
xRy & (Vi < D[bi < d}] & f(x) <s5))f D).

Step 2 (ispc(PB = idpc(P)). To show this fact, it suffices to show that the strict direct product (X,<sg)) =0
{(X,<)) i< 2} can be box embedded into a direct product of strong interval orders. Indeed, let 7 = {IL | x € X},
where for each i < 4,1 = (ai, bl) be an interval representation of <;.For each i < 4, define the ordering &; on X by

(xj)j</1 g (yf)j</1if and only if either ()b} < alor (i) a} = al, bl = bjand

where k = min{u | af # aj or by # b;)]

Cleatly, for all i,5; is an extension of <. Since the reals satisfy the law of trichotomy we conclude that for each
i <A,E; is a strong interval order. We show that (X, <gs)) is box embedded in the direct product ()? <Q(D)) =®
(%) 1i<2}whete D ={(X,5,) | i < AJand X = [[;; X'.Let & = (x,);<;, where x; = xfor all i < 2. By definition, the
ordering <qp) is defined

(J?j)qu <0® (37]-)1,</1 if and only if()?j)j</1 c; (37]-)],</1 holds for alli < A.
Letfbe the mappingf (%) = (%;);<s,where#; = #for alli < A.Clearly, there holds the following implication:

X <qp) ¥ (Vi< Dbl <dl] = (Vi< DEE F] © FF) <q0) fO).
Conversely, iff (¥) <q() f(#),then X &; for alli < A. Therefore, for alli < A
[bi < al]v([(at =al,bi =bi)A (b} < akwherek = min{u | d¥ # a}, or b} # b”)]
Suppose thatal = a}‘,andb" = b} for somei < A. Then, there is somek such that bf < a¥. On the other hand,
sincex C, yanday <bk<a bk(ax # akand b¥ # bk), we have that bf < af. But
then, b¥ < a¥ < b¥ < af 1rnphes b < aj; which is irnpossible. The last contradiction shows that for alli < A there
holds b}( < a}, which implies that¥ <y 7. Therefore,
X <52 f(X) <qo) fO)-
Step 3 (idpc(P) = idim(P)). Suppose thatidpc(P) = 1. Then, 1 is the least cardinal such that there is a box
embeddingfof(X, R)into a direct product(X, <o) =® {(X ) i < Jof strong interval orders{=;| i <1} = TBy
definition, X = [[;<;X".On the other hand, if for alli < 2, 3% = (ai, Bi)is an interval representationsf <, then the
ordering<,y)is defined by
(x)i<a <qcxy W< if and only if B < a} holds for alli < 4.
Then, by definition, we have
xRy & f(x) <o) fO)-
Iff (x) = (x]) ,then for eachi < Awe define the ordering<;onXby:
X & ylfand only if either B < a}oral = ai, B = BiandBy < af, wherek = min{u | af # a} orb} # bY)).
Clearly,each «;is a strong interval order extension ofs;. We prove that
f(x) <qm) FO) Vi< D K y).
Indeed, letf(x) <g@) f(¥). Then, x #y and for anyi < Athere holds Bl < a}andsox «; y for alli < A.Conversely,
letx «; y for alli < 4. Then, either
@) [(ab #ab) v (b # b)) A(BL < )
or
®[(ad = a}) A (bl = b)) A[(B) < db), wherej = min{k < 11 aj # aj or bf # bj]

Suppose thatal = ay andbl = b}for somei < A. Then,ﬁy a Wherej has the meaning above mentioned. On the
other hand, g} < a}implies thata), # a), or b} # b}.Since x «; ywe have thatf] < a).It follows thatp) < a}(a <
Prsvhich is impossible. The last conclusion shows that for all/<4we have that the case (a) holds. Therefore,

Vi <D <) = (Vi< D(BE <)) = (ica <o Widica = F(0) <o

f).
Therefore, by combining the previous implications, we get
Vi<DHx <K y) e f(x) <o fO).
Finally, byxRy & f(x) <¢() f(¥), we have that
xRy & f(x) <q@) f) & (Vi < D(x &; y).

Since R is acyclic, the last implication implies thatR = N;<; («;\ 4), where for alli < 2, «;\ 4is an interval order.
Because of the three steps above we conclude thatdimi@R) = spciR) = dpc(R), and the proof is complete.
The following corollary is an immediate consequence of Theorem 4.13.

Corollary 4.14.Let 6 = (X, <) be a poset. Then the following statements are equivalent.

(a) The interval order dimension of ® is the least cardinal 1 such that < is the intersection of 2 interval orders.

(b) The interval order dimension of G is the least cardinald such that there is a box embedding of (X, <) into a
strict direct product of Ainterval orders.

(c) The interval order dimension of® is the least cardinald such that there is a box embedding of (X, <) into a
directproduct of 1 strong interval orders.
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Let T be a triangle ABC. Denote k(T) = Aand n(T) = BC. Let Lyand L, be two distinct parallel lines. A point-interval
graph orPI graph is the intersection graph of a family of triangles ABC, such that Ais onL;andBCis on L, Except for
the definition we gave in the introduction, the linear-interval order can also be defined as follows: An acyclic
binary relation R is a linear-interval order if there is such a triangle T,for each elementx € X, and (y,x) € Rif and
only ifT, lies completely to the left of T,. In fact, the ordering of the apices k(T,) = x of the triangles gives the linear
order I, and the bases n(T,) = (a,,b,) of the triangles give an interval representation of the interval order P for
which R = L nP. As usual, the left and right extreme points of an interval I, ate denoted by a,andb, respectively.
When a, = b, = x, we say that I, is trivial. Let R* be the cartesian product of 2 many copies of R. A linear-interval
point y is the set [[;<yI; where I; ¢ Rfor alli < A(notice that in this definition it is allowed that I; be trivial). With
x € X we associate the box [];<; (ai, bi) € R*. This assignment is called a Jinear interval box embeddingof X.
For the linear-interval order dimension, the linear-interval box embedding plays the role of the point embedding
into R* introduced by Ore. The projections of a linear-interval box embedding on each coordinate yield a linear
order or an interval order.
To approach the linear-interval orders analogue of the Hiraguchi [10], Ore [15] and Milner and Pouzet [14] results
for posets, in a first step the concepts of direct product and strict direct product must be generalized from linear
orders and interval orders to linear-interval orders on X. The direct product of a family 6 = {(X;, ;) | i < AJof strong
linear-interval orders is the Cartesian product [;<; X' equipped with the ordering <) defined by

x 2o ¥ if and only if either b < a} or al = a}, b} = b}, holds for alli < A.
The strict direct product of a family 6 = {(X;,<;) | i < A} of linear-interval orders is the Cartesian product [];<; X
equipped with the ordering <4, defined by

x <) ¥ if and only if b; < a}, holds for alli < A.

Definition 4.4. Let®B = (X,R)be an abstract system. (i) We calllidpc(), the least cardinal Asuch that there is a
linear-interval box embedding of (X, R) into a direct product of 2 strong linear-interval orders. (i) We call lispc(B),
the least cardinald such that there is a linear-interval box embedding of (X,R)into a direct product of2 linear-
interval orders.

The following theorem generalizes Theorem 4.11 and Theorem 4.13. The prove is omitted since it follows the
same scheme.

Theorem 4.15. Let B = (X,R) be an abstract system where R is acyclic. Then the following statements are
equivalent.

(a) The (4, p)linear-interval order dimension of P is the least cardinal A such that R is the intersection of A linear-
interval orders which u of them are not linear orders.

(b) The (4, p)-lincar-interval order dimension of P is the least cardinal A such that there is a linear-interval
embeddingof (X, R) into a strict direct product of A linear interval orders, of which p are not strict linear orders.

(c) The (4 p)linear-interval order dimension of P is the least cardinal A such that there is a strong linear-
intervalembedding of (X,R)into a direct product of 1 strong linear-interval orders whichy of them are not linear
orders.

The following corollary is an immediate consequence of Theorem 4.17.

Corollary 4.16. Let ® = (X, <) be a poset. Then the following statements are equivalent.

(@) The (4, p)-linear-interval order dimension of ® is the least cardinal A such that < is the intersection of 2 lineat-
interval orders whichu of them are not linear orders.

(b) The (4, p)-linear-interval order dimension of < is the least cardinal 4 such that there is a linear-interval
embeddingof(X, <) into a strict direct product of A linear-interval orders whichu of them are not strict linear
orders.

() The (A w)linear-interval order dimension of ® is the least cardinald such that there is a strong lineat-
intervalembedding of (X, <) into a direct product of 1 strong linear-interval orders which u of them are not linear
orders.

Using the previous approach for linear-interval orders, we can define in a similar way the notion of (strong) linear-
semiorder box embedding. The only difference is that a semiorder is a poset whose elements correspond to unit
length intervals.

Definition 4.5. Let B = (X, R)be an abstract system. (i) We callsidpc(), the least cardinali such that there is a
linear-semiorder box embedding of (X, R) into a direct product of 2 strong linear-semiorders. (if) We call sispc(P),
the least cardinal 2 such that there is a linear-semiorder box embedding of (X, R) into a direct product of2 linear-
semiorders.
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The following two theorems are proved in a similar way to the proof of Theorems 4.11 and 4.13, by using
Theorem 3.8, Theorem 3.9 and Definition 4.5.

Theorem 4.17. Let B = (X,R) be an abstract system where R is acyclic. Then the following statements are
equivalent.

(a) The (A, w)-linear-semiorder dimension of P is the least cardinal A such that R is the intersection of A lineat-
semiorders whichu of them are not linear ordets.

(b) The (4, p)linear-semiorder dimension of P is the least cardinal A such that there is a linear-semiorder
embeddingof(X, R) into a strict direct product of2 linear-semiorders which u of them are not strict linear orders.

() The (4 p)linear-semiorder dimension of P is the least cardinal A such that there is a strong linear-
semiorderembedding of (X, R) into a direct product of 1 strong linear-semiorders which p of them are not linear
orders.

The following corollary is an immediate consequence of Theorem 4.17.

Corollary 4.18. Let ® = (X, <) be a poset. Then the following statements are equivalent.

(a) The (4, w)-linear-semiorder dimension of ® is the least cardinal A such that < is the intersection ofilinear-
semiorders which u of them are not linear orders.

(b) The (4, u)linear-semiorder dimension of < is the least cardinal 2 such that there is a linear-semiorder
embeddingof(X, <) into a strict direct product of A linear-semiorders whichu of them are not strict linear orders.

(¢) The (4 p)linear-interval order dimension of ® is the least cardinal A such that there is a strong linear-
semiorderembedding of (X,<) into a direct product of 1 strong linear-interval orders which u of them are not
linear orders.
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