
Journal of Computer Science and Information Technology
June 2014, Vol. 2, No. 2, pp. 09-20

ISSN: 2334-2366 (Print), 2334-2374 (Online)
Copyright © The Author(s). 2014. All Rights Reserved.

Published by American Research Institute for Policy Development

Three Versions of Clique Search Parallelization

Bogdan Zavalnij1

Abstract

In our paper we present three parallel versions for maximum clique finding
algorithms. The parallelization algorithm by quasi coloring was proposed by S.
Szabo. In our paper we present the actual implementation of the algorithm and
actual results measured on a large scale supercomputer up to 512 cores. We also
implemented the proposed tuning of the algorithm and present here the
measurements and results. Apart for the implementation we propose another
method of tuning the original algorithm, which is based on Las Vegas
randomization method. In our paper we compare the measured results of the three
versions of the algorithm.

Keywords: maximum clique, parallelization, quasi coloring, Las Vegas method

1. Introduction

Because the problem of maximum clique search proved to be useful in
different applied problems different methods were introduced to propose efficient
algorithm to this problem. See (Hasselberg 1993), (Pardalos 1998), (Bomze 1999),
(Kumlander 2006). Also, because the problem itself is an NP-hard problem some
authors proposed parallel algorithms to speed up the computations (Pardalos 1998),
(Thimm 2006), (Eblen 2010) (Depolli 2013). In our paper we try to explore the
possibilities of clique search parallelization based on S. Szabo's proposition in this
paper "Parallel algorithms for finding cliques in a graph" (Szabo 2011).

First, we implemented the original proposal for parallel computing using MPI

and made extensive measurements of running times and other information relevant.
Second, we introduce a modified version of the original proposal, and alike program
it, and make measurements.

1 PhD, Institute of Mathematics and Informatics, University of Pecs, Hungary. H-7624, Pecs,
 Ifjusag utja 6. E-mail: bogdan@ttk.pte.hu

10 Journal of Computer Science and Information Technology, Vol. 2(2), June 2014

Third, we introduce a modification based on the idea of Las Vegas

randomization, and again alike program it, and make extensive measurements. All
measurements took place on the Finish supercomputer Sisu, at the CSC, IT Center
for Science. The measurements used 1+4, 16, 64 and 512 cores, based on, and
compared to the sequential program written by S. Szabo. Actually the parallelization is
not dependent on this k-clique program, it is only a frame system, and any k-clique
program can be used instead. (In the third version a minor modification of the
program is involved, so to be more precise mostly any k-clique program can be used.)
The measurements proved the parallelization method to be successful for some quite
hard clique problems.

The problem we solve is the maximum clique problem. To be more specific,

the algorithms described in this paper answer the question: "Is there a maximum
clique of size k in a given graph?"

2. Definitions

Let G=(V,E) be a simple, finite, undirected graph. A C induced sub-graph of

G is called a clique if the nodes of C are pairwise connected to each other for all
nodes. The size of a clique is the number of nodes in the clique. A maximum clique of
a graph G is a clique which size is at least as big as the size of any other clique's in the
graph. We call the clique number of a graph G the size of its maximum clique.

We call a partitioning of the nodes of a given graph G a coloring, if there is no

two nodes in any partition such that those two nodes would be connected by an edge.
In other words the partitions, or the so called color classes are independent sets of the
given graph. The smallest number of the color classes to which the graph can be
properly partitioned in a legal coloring is called the chromatic number of the graph.

The neighborhood of a given node a, denoted by N(a), is the set of nodes that

are connected to a. The neighborhood of two nodes a and b, denoted by N(a,b), are
the set of nodes that are connected to both a and b.

Proposition 1: the chromatic number of a graph is an upper limit to its clique

number. Proof: as the nodes of any clique are pairwise connected they must be in
different color classes in any legal coloring.

Bogdan Zavalnij 11

Proposition 2: the number of color classes of a given graph by any coloring is
an upper limit to its clique number. Proof: from Proposition 1. and the definition of
the chromatic number.

3. Quasi Coloring

By proposition from S. Szabo we introduce the notion of quasi coloring. This

would mean a partitioning of the nodes of a graph which do not fulfill the
requirements of a proper coloring. We call these partitions the quasi color classes.
That would mean, that there are still some edges inside of a quasi color class. We will
call these edges "disturbing", because they prohibit us to make a proper upper limit
for the maximum clique problem. We will try to remove those edges, and by
removing all of them get a real coloring, which will provide us an upper limit. Because
the "removal" will be a hard work, the proposed algorithm suggests us to construct a
quasi coloring with as few disturbing edges, as possible.

As the question we should answer is whether there is a clique of size k in the

graph, we will construct a quasi coloring of k-1 partitions. So the algorithm first
divides the nodes into k-1 partitions, then if the number of the disturbing edges can
be lowered by removing a particular node from a partition and placing it in an other
one it moves that node. This preconditioning algorithm runs till it finds such a node.
This is a greedy algorithm, and obviously will find a sub-optimal solution only.

4. The Original Algorithm

As we search cliques of size k and partitioned the graph into k-1 partitions

that means that any clique of size k must have at least two nodes from the same
partition. As all nodes of a clique are connected, thus these two nodes are connected
as well. The edge between these two nodes is a disturbing edge, as we call the edges
between the nodes of a given partition. A clique of size k with a given edge (a,b) exists
if and only if there is a clique of size k-2 in the neighborhood of a and b – N(a,b).

So our strategy is to take all the disturbing edges, construct the sub-graphs

spanned by the endpoints of those edges, and search for k-2 clique in these spanned
sub-graphs. If we find one, than our answer to the question is: Yes, there is; if we do
not find any, than the answer will be: No, there is none.

12 Journal of Computer Science and Information Technology, Vol. 2(2), June 2014

The property above can be examined in another way. If we examine the

neighborhood of the endpoints of a disturbing edge and find no k-2 clique, that
means that there can be no k clique in the graph which includes this edge. If so, we
can freely remove this edge from the graph without changing the answer to the
original question. By examining all the disturbing edges and finding no k clique
including those edges, and by the end removing all these disturbing edges, we will get
a proper coloring with k-1 colors, which concludes that there is no k clique in the
remaining graph.

The parallelization of the proposed scheme is strait forward. We construct the

spanned sub-graphs of neighborhoods of the endpoints of the disturbing edges and
solve these problems independently on different processors using the same k-clique
program by S. Szabo with which the parallel running times are compared. We use a
producer-consumer scheduling (Dijkstra 1968, pp. 31-34.) or in other words the PO
Box scheduling, which means that the problems are constructed by a master and the
slaves are asking for a new problem from him, and solving them one by one. We hope
for more even distribution by this method, as the sub-problems can have huge
differences in run times, and the PO Box scheduler will give the slaves more smaller
problem to solve and possibly only one for those which get a problem of huge
running time.

The results for the running times of the program are indicated in the table by

"nopt" (non-optimal).

5. Az Optimized Modification

If we forget about parallelization for a while we can optimize the above

described algorithm. Sequentially going along the disturbing edges we can make the
deletion of them not only at the end, but even alongside the running of the sequential
algorithm. By examining any disturbing edge and finding no k-2 clique in the spanned
sub-graph of the neighborhood of its endpoints, that means we can exclude this edge
from the problems lying ahead. In other words we can delete this disturbing edge
right away, and construct the further sub-problems based on the reduced graph.

This will give us hopefully problems in reduced complexity, in front of the

queue will stand the harder problems, and at the end the quite easy ones.

Bogdan Zavalnij 13

The interesting property of this serialization is that the resulting problems are
not dependent on this given sequence of the disturbing edges. That is because on one
hand if any sub-question would return a “Yes” answer we would not be interested in
the other problem's solution, as this is also the global answer to the original question.
On the other hand if a sub-question would lead to a “No” answer, that would mean
that the disturbing edge of this sub-problem can be deleted from all the other sub-
problem, and this deletion can be made at any time, even in the very beginning. So we
can solve the problems in other sequence than the sequence of problems that
corresponds to the deletion of the edges. This means, that the problems can be solved
in parallel meaner as well, as sub-problems are totally independent.

The results for the running times of this version of the program are indicated

in the table by "opt" (optimal).

6. Las Vegas Parallelization

A version of the Monte Carlo random method was proposed by Laszlo Babai

(Babai 1979), and named as Las Vegas Method. Based on the run-time differences of
algorithm appliances the parallelization mostly for discrete optimization problems
based on the Las Vegas randomization was proposed and researched by several
authors (Luby 1993), (Luby 1994), (Alt 1996), (Truchet 2012).

A randomized algorithm of Las Vegas type has two properties:

1. If for a given problem instance the algorithm A terminates returning a solution s, s

is guaranteed to be a correct solution of the problem.
2. For any given problem instance the run-time of A applied to the problem is a

random variable.

As we can easily see, the sub-problems of the first method correspond tho

this definition, as we always get the right answer to the question of the k-2 clique
existence, but we cannot determine the running times.

We can say even more: by experience the running times of the sub-problems

vary greatly, usually they differ in quite a few orders of magnitude. The modified
optimized algorithm sometimes can help with this, as it reduces the problems in the
sequence of the disturbing edge removal.

14 Journal of Computer Science and Information Technology, Vol. 2(2), June 2014

But the measurements show us clearly, that in some cases it does not help, as

in the case when the hardest sub-problems are in the beginning of the edge removal
sequence.

We propose an alternative method for the edge removal based on the actual

hardness of the problems. For this we need to slightly modify the k-clique searching
program which lies in the core of our parallelization.

First, we start the parallel program the same way as it is described in the first

method: no edge removal applied. But when a sub-problem is solved we immediately
know, that that very edge cannot be a part of any k-2 clique, and we could have
removed it from all the problems yet unsolved. We will do it in two ways. First, any
problem asked after this point will be constructed without this edge. Second, the
already running k-clique searching programs are notified about this edge and they
delete it from their graph representation. It seems like changing tiers on a car while
driving on a highway, but if the algorithm has a strict data structure (e.g. the
algorithm does not reorder the nodes and we can point to a certain edge) where the
edges are stored than it is usually safe to remove that edge while the algorithm is
running. Quite a few algorithms are constructed that way, and the one we use is one
of them.

Let us now examine the consequences of this method. This way we do not
force some sub-problems to be smaller in the preconditioning part of the algorithm,
but rather start them without edge deletions. The problems will be usually harder to
solve, but still the solution time will vary in orders of magnitude. The easier problems
will be solved fast, and the information gained from this solutions can be used to
make the other problems easier in running time. So this way we hope to make the
edge elimination in that order, which is more close to an optimal one, where the
harder problems have more edges deleted and so get more help.

The results for the running times of this version of the program is indicated in

the table by "lv" (Las Vegas).

7. Results

The attached table shows running results from different types of clique search

problems. The first part consists of random graphs with different edge density.

Bogdan Zavalnij 15

The second part is taken from the Second DIMACS Implementation
Challenge (DIMACS), and the third part contains some hard problems: monotonic
matrices (Stein 1994,, p 95.) and deletion codes problems from Neil Sloane site
(Sloan) based on research of (Bogdanova 2001). We included only some of the
DIMACS graphs, because parallelization is only interesting for those problems, where
the base problem is long running enough, at least a minute, but rather hours. We
certainly excluded all problems with sub second running time. The start up time of
the parallel environment, especially for hundred of processors, and the first
communications are measurable in seconds. So we clearly are interested in problems
which are very hard, and especially in those, which would be unfeasible for many
algorithms.

The sequential program was executed on the same supercomputer – for

problems comparing running times on different computers see the paper by P.
Prosser (Prosser). The parallel program run with 5, 16 64 and 512 processors (5
means 1+4, as there is a master thread and 4 slaves who do the actual computation, so
the results should be better to compare.) The time limits for the sequential
computation and the 64 and 512 process runs were 12 hours, for the 5 and 16
processors 30 minutes. For the extremely hard problems we make measurements with
time limit of 3 days. All the problems were stated so to find a clique one bigger than
the actual known clique size, so all the instances answered “No” to this question. We
do this as the finding of the maximum clique depends on sheer luck, but the proof of
the fact that there is no bigger clique (asking the question for clique size +1) does not
depend on any lucky configuration, as the search tree of the problem will be explored
fully. Obviously we run test on clique size as well, to check the rightness of the
program. All such test completed with a right answer and found a clique. As the
running times of those instances of less importance we did not included them in the
result's table.

As it is demonstrated the table most of the problems were divided to

reasonable number of sub-problems. Two much of them result in degradation, as
communication time and the preconditioning time of the sub-problems will
enormously rise the time of the whole computation.

As an example for this see the p_hat1500-1 graph which suffers from this

extremely and slowdown with 4 slaves can be observed.

16 Journal of Computer Science and Information Technology, Vol. 2(2), June 2014

On the other hand most of the problems achieved good speedup from more

and more processors which led to many hard problems to be solved in reasonable
amount of time, and some very hard problems to be solved in feasible time limit. We
are extremely happy with this little result, as the framework of the parallelization
through which we achieved this results is very simple.

Obviously we can observe some caps to speedup, as the most hard

subproblem time limits the whole running time: the whole computation cannot be
done in shorter time as the longest subprocess. Good example for this are the
monoton-8 and monoton-9 problems for 64 and 512 processors by the non-optimal
and optimal version of the algorithm.

Of course the most interesting result came from the Las Vegas algorithm. For

many graphs (mostly random ones) the result of it lies between the non-optimal and
optimal versions, mostly near to the optimal. This is a good result, as it indicates, that
this algorithm should not be too badly different from an optimal one in any case –
although extreme examples may occur. In none of the cases it is worse than non-
optimal, which means that we are not making the problem worse by this approach.
And there are some cases, when the Las Vegas approach is far better than the optimal
version. Even more important for us is that this improvement is achieved on
extremely hard problem instances. It seems that this approach starts the simplification
of the sub-problems more conservatively as the optimal version, but if the program
runs for a long time it helps more and more. In the end achieving more help in those
problems, which prove to be really hard.

By taking a look at the detailed run outputs (not included in this paper) we can

see the clockwork of the algorithms through the actual running times of the sub-
problems. The hard instances tend to have extremely different running times of sub-
problems. The original two versions of the algorithm consume many easy problems in
the beginning, and leave a few hard ones to the end. The problems become
exponentially harder (figuratively speaking). If we compare this to the Las Vegas
version, we find the same configuration, but the tail of the long running algorithms
rise more conservatively. The degradation of the algorithm on harder and harder
problems is much slower than in the original version.

Bogdan Zavalnij 17

 N % cliqu

e
parts seq 5-

nop
t

5-
opt

5-lv 16-
nop
t

16-
opt

16-
lv

64-
nop
t

64-
opt

64-
lv

512
-
nop
t

512
-opt

512
-lv

rand 200
p=0.9

200 9
0

40 152 623 376 109 126 123 33 66 49 27 39 38 27 39

rand 300
p=0.7

300 7
0

21 688 17 53 52 52 15 15 15 4 4 4 1 1 1

rand 300
p=0.8

300 8
0

29 540 898 466 231 242 135 64 71 45 16 23 23 15 23

rand 300
p=0.9

300 9
0

47 341 * * * * * * * * * * * * 22k

rand 500
p=0.5

500 5
0

13 2780 20 167 158 159 46 44 45 11 11 11 2 2 2

rand 500
p=0.6

500 6
0

17 2478 67 431 420 424 119 116 118 29 28 29 4 4 4

rand 500
p=0.7

500 7
0

22 2231 345
3

* 140
1

144
4

584 387 407 142 93 99 25 14 19

rand 500
p=0.8

500 8
0

32 1664 * * * * * * * * 18k 21k 14k 659
5

418
9

rand 800
p=0.3

800 3
0

10 5709 52 45 41 41 12 11 12 3 3 3 1 1 1

rand 800
p=0.4

800 4
0

11 7466 68 439 398 402 121 110 113 29 26 27 4 4 4

rand 800
p=0.5

800 5
0

14 7296 147 * * * 520 488 501 125 117 120 16 15 16

rand 800
p=0.6

800 6
0

19 6345 265
8

* * * * * * 356 326 335 47 42 44

rand 800
p=0.7

800 7
0

25 5587 * * * * * * * 16k 715
4

790
0

239
1

961 114
3

rand 900
p=0.3

900 3
0

9 8614 74 94 84 85 26 23 24 6 6 6 1 1 1

rand 900
p=0.4

900 4
0

12 8694 97 732 669 676 202 185 190 49 44 46 7 6 6

rand 900
p=0.5

900 5
0

15 8729 244 * * * 905 850 873 217 204 210 28 27 27

rand 900
p=0.6

900 6
0

19 8215 710
9

* * * * * * 705 620 643 92 80 85

rand 1000
p=0.2

100
0

2
0

8 7550 77 8 8 8 2 2 2 1 1 1 1 1 1

rand 1000
p=0.3

100
0

3
0

9 1098
6

101 174 153 155 48 42 44 12 10 11 2 2 2

rand 1000
p=0.4

100
0

4
0

12 1091
8

136 126
8

115
6

116
8

350 319 329 84 76 79 11 10 10

rand 1000
p=0.5

100
0

5
0

15 1095
5

447 * * * * * * 368 345 355 48 45 46

rand 1000
p=0.6

100
0

6
0

20 9823 15k * * * * * * 123
6

106
4

110
0

158 135 142

brock800_3 800 6
5

25 4888 730
2

* * * * * * 472 413 425 64 55 59

brock800_4 800 6
5

26 4592 562
1

* * * * 157
0

160
4

418 377 387 56 50 53

latin_square_
10

900 7
6

90 380 490
2

* 142
3

150
4

531 403 430 150 105 128 82 62 83

keller5 776 7
5

27 420 453
1

* * * 986 672 686 318 173 228 138 137 138

MANN_a45 103
5

9
9

345 45 366
6

134
0

719 105
1

402 205 388 183 140 174 183 140 183

sanr200_0.9 200 9
0

42 128 387 181 60 68 61 19 31 38 17 44 38 17 38

sanr400_0.7 400 7 21 1408 398 386 316 322 107 88 90 27 21 22 5 3 4

18 Journal of Computer Science and Information Technology, Vol. 2(2), June 2014

0

p_hat1000-1 100
0

2
4

10 7308 79 102 92 93 29 26 27 7 6 7 1 1 1

p_hat1500-1 150
0

2
5

12 1491
8

278 894 814 824 247 225 232 60 54 56 9 8 8

p_hat500-2 500 5
0

36 484 29 101 99 100 29 28 29 8 8 8 3 3 3

p_hat700-2 700 5
0

45 826 935 101
5

560 577 358 159 178 164 42 78 121 37 101

p_hat300-3 300 7
4

36 297 242 91 52 56 29 15 21 19 10 18 19 9 19

p_hat500-3 500 7
5

50 657 * * * * * * * * 11k 716
5

41k 11k 530
0

monoton-7 343 7
9

19 313 7 76 74 74 23 21 22 8 6 6 4 2 4

monoton-8 512 8
2

23 590 234
7

* 128
2

129
2

959 408 385 475 409 195 405 409 243

monoton-9 729 8
4

28 932 * - - - - - - 150
k

150
k

44k 150
k

150
k

31k

deletion-9 512 9
3

52 375 * - - - - - - - - - * * 255
k

* denotes run time
over time limits

8. Some Notes

It is quite obvious, that given the order of the edge removal in the Las Vegas

run we could had make the sequence of the edge removal in the optimal version
exactly this way. In this case, as problems can be paired up, we get each sub-problem
easier, or at least not harder, than in the Las Vegas method. Which means shorter (or
at least not longer) running time. Alas for this sequence we should first run the Las
Vegas version of the problem. But it can mean, that with some clever measurements
of sub-problem hardness we can construct such a sequence for the removal of the
disturbing edges, that will result in faster running time, or even for much faster as
measured in this paper. This question remains open for now.

Also remains for the future research to use the quasi coloring for the clique

search, as this quasi coloring gets closer and closer to real coloring during the
algorithm, and this property can perhaps help a lot to the programs used in the core
of the method.

We used in the last, Las Vegas method the property of the k-clique search

program that the graph can be reduced during the search. For programs that cannot
be treated this way (Patric Ostergard's cliquer is clearly one example) the method still
can be used. In this cases we can restart the clique search after some reduction from
the beginning, and thus gain advantage from the altered problem. This approach is
similar to some SAT solvers, which "learn" and restart to achieve faster solution.

Bogdan Zavalnij 19

Acknowledgements

Author would like to thank the HPC Europe grant for the fruitful visit to

Helsinki, to the Finish Computer Science Center which hosts the supercomputer Sisu
on which the computations was performed, and student Annamaria Kis, who wrote
the base program for her BSc thesis that was altered for the purposes of this paper.

This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-

0001 „National Excellence Program – Elaborating and operating an inland student
and researcher personal support system” The project was subsidized by the European
Union and co-financed by the European Social Fund.

References

Alt, H., Guibas, L., Mehlhorn, H., Karp, R. and Wigderson, A. (1996). A Method for

Obtaining Randomized Algorithms with Small Tail Probabilities. Algorithmica,
October/November 1996, Volume 16, Issue 4-5, pp 543-547.

Babai, L. (1979). Monte-Carlo algorithms in graph isomorphism testing. Université de
Montréal Technical Report, DMS, Citeseer.
http://people.cs.uchicago.edu/~laci/lasvegas79.pdf

Bogdanova, G.T., Brouwer, A.E., Kapralov, S.N. and Ostergard, P.R.J. (2001). Error-
Correcting Codes over an Alphabet of Four Elements. Designs, Codes and
Cryptography, August 2001, Volume 23, Issue 3, pp 333-342.

Bomze, I.M., Budinich, M., Pardalos, P.M. and Pelillo, M. (1999). The Maximum Clique
Problem. In D.-Z. Du and P.M. Pardalos (Eds.)
Handbook of Combinatorial Optimization. (pp. 1—74.) Kluwer Academic
Publishers.

Depolli, M., Konc, J. Rozman, K. Trobec, R. and Janežič, D. (2013) Exact Parallel Maximum
Clique Algorithm for General and Protein Graphs. J. Chem. Inf. Model., 2013, 53 (9),
pp 2217–2228 DOI: 10.1021/ci4002525

Dijkstra, E.W.D. (1968). Cooperating sequential processes.
http://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF DIMACS.
ftp://dimacs.rutgers.edu/pub/challenge/graph/ (May 30, 2014)

Eblen, J.D. (2010) The Maximum Clique Problem: Algorithms,
 Applications, and Implementations PhD diss., University of Tennessee, 2010.
http://trace.tennessee.edu/utk_graddiss/793
Hasselberg, J., Pardalos, P.M. and Vairaktarakis, G. (1993) Test case generators and
computational results for the maximum clique problem. Journal of Global
Optimization, Winter 1993, Volume 3, Issue 4, pp 463-482.

Kumlander, D. (2006) A Simple and Efficient Algorithm for the Maximum Clique Finding
Reusing A Heuristic Vertex Colouring. IADIS International Journal on Computer
Science and Information Systems, Vol. 1, No. 2, pp. 32-49.

20 Journal of Computer Science and Information Technology, Vol. 2(2), June 2014

Luby, M. and Ertel, W. (1994). Optimal Parallelization of Las Vegas Algorithms. In Enjalbert,

P at all. (Eds.), Lecture Notes in Computer Science. (pp. 461—474.) Springer Berlin
Heidelberg.

Luby, M., Sinclair, A. and Zuckerman, D. (1993) Optimal Speedup of Las Vegas Algorithms.
In: Proceedings of the 2nd Israel Symposium on Theory of Computing and Systems,
Jerusalem, Israel, June 1993.

Szabo, S. (2011). Parallel algorithms for finding cliques in a graph. Journal of Physics:
Conference Series Volume 268, Number 1. 2011 J. Phys.: Conf. Ser. 268 012030
doi:10.1088/1742-6596/268/1/012030

Pardalos, P.M., Rappe, J., Mauricio, M. and Resende, G.C. (1998). An Exact Parallel
Algorithm For The Maximum Clique Problem. In High Performance and Software in
Nonlinear Optimization. (pp. 279—300.) Kluwer Academic Publishers.

Prosser. P. Exact Algorithms for Maximum Clique – A Computational Study.
http://www.dcs.gla.ac.uk/~pat/maxClique/distribution/TR-2012-333.pdf (May 30,
2014)

Stein, S.K. and Szabo, S. (1994) Algebra and Tiling. MAA Carus Monograph 25. Sloan, N.
http://neilsloane.com/doc/graphs.html (May 30, 2014)

Thimm, L.R., Kreher, D.L. and Merkey, P. (2006) A parallel implementation for the
maximum clique problem. Journal of Combinatorial Mathematics and Combinatorial
Computing.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=041F42A052E680B7ABF
69191F2055DAD?doi=10.1.1.117.7013&rep=rep1&type=pdf (May 30, 2014)

Truchet, C., Richoux, F. and Codognet, P. (2012) Prediction of Parallel Speed-ups for Las
Vegas Algorithms. http://arxiv.org/pdf/1212.4287v1.pdf

