
Journal of Computer Science and Information Technology
December 2014, Vol. 2, No. 3 & 4, pp. 55-81
ISSN: 2334-2366 (Print), 2334-2374 (Online)

Copyright © The Author(s). 2014. All Rights Reserved.
Published by American Research Institute for Policy Development

DOI: 10.15640/jcsit.v2n3-4a4
URL: http://dx.doi.org/10.15640/jcsit.v2n3-4a4

Generating the PIM Behavioral Model from the CIM using QVT

Najiba Addamssiri1, Abdelouhaed Kriouile2, Youssef Balouki3 & Gadi Taoufiq4

Abstract

The software process based on the Model Driven Architecture (MDA) is
constructed from a set of transformation sequences. In the context of MDA, we
have defined an approach based on two kinds of transformation: The first one is the
horizontal transformations in the Computation Independent Model (CIM) level
between the Business Process Model and Notation and the Use Case Diagram (UC-
UML) with her textual description (TD). These transformations provide two entry
points into MDA and ensure the refinement of the CIM high level. The Second type
is the vertical transformation from CIM to behavioral model of Platform Specific
Model (PIM) level represented by the System Sequence Diagram (UML-SSD). We
have developed a set of rules using Query/View/Transformation language, and we
have automated these steps to automatically generate the UML-SSD diagram from
the UC-UML and its textual description structured with Semantics of Business
Vocabulary and Business Rules standard which are in turn obtained automatically
from the BPMN. Our approach was applied in an e-library books system. The
application of our proposal shows that our automatic process can be used to obtain
a set of useful artifacts for software development processes. The applicability of the
approach is exhibited via one case study.

Keywords: MDA; Model transformation; QVT; CIM; PIM; SBVR

1. Introduction

The term Model-Driven Engineering (MDE) is typically used to describe
software development approaches in which abstract models of software systems are
created and systematically transformed to concrete implementations (Robert &
Bernhard, 2007).

1 Lavete Laboratory, Univ Hassan 1, 2600 Settat, Maroc. Email: addam.naji@gmail.com
2 Lavete Laboratory, Univ Hassan 1, 2600 Settat. Email:kriouile1970@gmail.com
3 Lavete Laboratory, Univ Hassan 1, 2600 Settat. Email:Balouki.youssef@gmail.com
4 Lavete Laboratory, Univ Hassan 1, 2600 Settat. Email:gtaoufiq@yahoo.fr

56 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

The Model Driven Architecture (MDA) (OMG, Model Driven Architecture,
ormsc/2001-07-01, July 2001) is a specific variant of MDE that aim at elaborating
different models and model transformations which are used to generate implemented
level models. In the context of the MDA, model is a viewpoint on a system with
regard to the architectural concepts and structuring rules that it tries to abstract.

The model should be conformed to an abstract model named meta-model. As

seen in the Figure 1, a transformation model is a process that receives input from the
source model which conforms to source meta-model, and then produces an output
target model that itself conforms to a target meta-model.

Figure 1: Model Transformation Process

MDA distinguishes among three different models of the process of software

development (Miller & Mukerji, 2003). It’s initiated with the development of the
Computation Independent Model (CIM), and transforms it into the Platform
Independent Model (PIM). The PIM is also transformed into the Platform Specific
Model (PSM), and at the end, the PSM is used to generate the code of application.

The model transformation approaches proposed in the context of MDA treat,

in general, the transformations between PIM, PSM and the Code. However, few
researches, which are still not ripened, have enclosed the construction and the
modeling of CIM and its transformation to PIM.

Addamssiri et al. 57

Our approach consists of modeling the CIM level and transforming it
automatically to the PIM level. In this paper we have focused, firstly on the
representation of the CIM level by both the Business Process Model and Notation
(BPMN) (OMG, Business Process Model and Notation (BPMN), Version 2.0.1,
September 2013) and the Use Cases Diagram (UC-UML) with its Textual Description
(TD), and secondly on automatically generating, from the CIM level, the Behavioral
PIM Model which is represented by the System Sequence Diagram (UML-SSD)
(Larman, 2004).

While any model take part of the transformation should be modeled and

conformed to one meta-model, we have proposed to formalize the textual description
(TD) of use cases by the Semantics of Business Vocabulary and Business Rules
(SBVR) (OMG, Semantics of Business Vocabulary and Business Rules (SBVR), 2013).

At the CIM level, we begin by elaborating the BPMN Model, and then we

transform it using the QVT (Query/View/Transformation (OMG, QVT, Meta
Object Facility (MOF) 2.0 Query/View/Transformation Specificatio, 2011))
transformation rules to a Use Cases Diagram (UC-UML) with its Textual Description
(TD) formalized by the Semantics of Business Vocabulary and Business Rules.

In order to have the same vision between, on one hand the experts of the

domain and analysts of the requirements and the other hand, the experts of the
system design and development, we propose a refinement of the highest level (CIM)
based on a bidirectional transformation between BPMN and UC-UML with its TD-
SBVR.

To obtain the Behavioral Model of the PIM from the CIM model, we

transform by using a set of QVT transformation rules the Use Cases Diagram with its
textual description to a System Sequence Diagram (UML-SSD).

This paper is organized as follow: In section 2, we present a background and

related works. Section 3 will cover our proposal model transformations. In section 4,
we propose an evaluation based, firstly on one case study and secondly on criteria
assessment. Finally, in section 5 we present the conclusions and our future
perspectives.

58 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

2. Background and Related Works

2.1. CIM and PIM in Short

According to (Streekmann, Steffens, Möbus, & Garbe, 2006), the CIM is the

initial point in MDA approach since it includes the business processes used to execute
the business of the enterprise, the domain model that represents the intra- or inter-
organizational understanding of the domain the application operates in, and the
requirements of the system.

The CIM level has a principal role to connect and to facilitate the

communication between the domain expert analysts, the business analysts or domain
users and the software analysts. This level contains several distinct models that depict
system requirements, business processes and business objects (Kriouile, Gadi, &
Balouki, CIM to PIM Transformation: A criteria Based Evaluation, July-August 2013).
The models represented in the CIM must be understandable by the domain experts
and must represent the static, behavioral, and functional aspect of CIM.

The PIM level shows the information system in hiding the details of concrete

technology. The models representing this level should describe its static and dynamic
aspects. These models must also be productive because they are the foundation of the
whole process of code generation defined by the MDA (Kriouile, Gadi, Addamssiri,
& El Khadimi, 2014).

2.2. Transformation Language: QVT

In order to implement the various transformations, we have to use a

transformation language that takes a model as input, according to the rules, to
produce an output model. It is currently possible to find many model transformation
languages such as BOTL (Braun & Marschall, 2003), Kermeta1 (Falleri, Huchard, &
Nebut, 2006), GReAT (Agrawal, 2003) and ATL (Jouault & Kurtev, 2005). However,
the QVT language is the unique proposal from the Object Management Group
(OMG).

Addamssiri et al. 59

We picked the QVT language since it supports bidirectional transformations,
both horizontal and vertical transformation, solves transformational problems within
the OMG/MDA Technical Space, and assures automatic traceability; especially
Operational QVT (QVTo (OMG, QVT, Meta Object Facility (MOF) 2.0
Query/View/Transformation Specificatio, 2011)) which has a mature and stable
tooling.

2.3. SBVR

SBVR appeared to share the business semantics between the business

community and the IT community. It represents an abbreviated of ”Semantics of
Business Vocabulary and Business Rules” which is a publicly available specification
from the Object Management Group (OMG) (OMG, Semantics of Business
Vocabulary and Business Rules (SBVR), 2013) intended to be the basis for a formal
and detailed natural language declarative description of business vocabularies and
rules.

SBVR allows making business rules accessible to software tools that support

the business experts in creating, finding, validating and managing business rules. It
also makes these rules accessible to tools that support the information technology
experts in converting them into implementation rules for automated systems. SBVR is
compatible with MDA and behaves as a Computational Independent Model. This
Compatibility with MDA makes it adopted by several business organizations.

The basic principle of SBVR is: “SBVR rules are built on of fact types and

facts types are built of terms”.

In our research we use the business vocabulary which has two major types of

elements: Concepts and Fact Types.

• A concept is a key term that represents a business entity in a particular domain. The
basic types of concepts are (Bajwa, Lee, & Bordbar, 2011): - Noun concept (Term):
represented by a word or a group of words represented a business entity.

60 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

- Individual concept (Name): represented by a word or a group of words. It

represents an instance of a particular term.
- Verb concept: represents the notion of relations and is defined as “a concept that is

the meaning of a verb phrase”.

Typically, the common nouns are classified as noun concepts while the proper
nouns or quantified nouns are denoted as individual concepts. A verb concept can be
an auxiliary verb or action verb or both.

• A fact type is a combination of a verb concept and noun concepts. A Fact type
specifies the relationship among different concepts in a business rules.

Every fact can be represented in the form of a term/Name-verb-term/Name

template.

2.4. Related Works

According to the evaluation in (Kriouile, Gadi, & Balouki, CIM to PIM

Transformation: A criteria Based Evaluation, July-August 2013) which examines the
approaches dealing with the modeling and transforming the MDA in high levels CIM
and PIM described in the papers (Kherraf, Lefebvre, & Suryn, 2008), (Rodríguez,
Fernández-Medina, & Piattini, 2008), (Zhang, Mei, Zhao, & and Yang, 2005), (Kardoš
& Drozdová, 2010), (Bousetta, El Beggar, & Gadi, 2013), (Wu, Shin, Chien, Chao, &
Hsieh, June 2007), (Fatolahi, Somé, & Lethbridge, 2008), (Sharifi & Mohsenzadeh,
2012), and (Osis, Asnina, & Grave, 2008). It has deduced that the current methods
studied were not ripened and did not cover all of the transformation stages.

According to (Kherraf, Lefebvre, & Suryn, 2008) the transformation CIM to

PIM is presented as disciplined approach. Business processes and system
requirements are modeled in a CIM using two activity diagrams. System requirements
are specified from the detailed activity diagrams, and system components are created
from the model of requirement elements. Finally, a set of business archetypes helps to
transform the system components to the PIM layer in details. This approach is based
on modeling the CIM using the UML 2.0 Activity Diagrams as a single technique, and
the PIM behavioral aspect is not specified. In (Rodríguez, Fernández-Medina, &
Piattini, 2008) it is presented as an approach in which CIM level is represented by
business processes in BPMN notation.

Addamssiri et al. 61

It proposes an approach based on the transformation of business process
diagrams to analytical UML 2.0 Class Diagrams and UML 2.0 Use Case Diagrams.
The CIM is composed of a business process model using the secure business process
in BPMN and by UML 2.0 Activity Diagram. The CIM is transformed, with the help
of QVT rules, checklists, and refinement rules into two models that are part of the
PIM: a Use Case Diagram and a Class Diagram. Use Cases Diagram is moved in this
method at the PIM level. In addition, the diagrams of the PIM that are obtained by
transformation of the CIM do not cover the PIM behavioral structure. In (Zhang,
Mei, Zhao, & and Yang, 2005), the approach is based on features and components
which are adopted as the key elements of CIM and PIM building. In this paper, the
requirement in CIM is represented by feature model which includes a set of features
and relationship between them. The PIM is represented by software architecture that
includes a set of components and interaction between them. This method uses an
intermediate model that is neither CIM nor PIM. The paper (Kardoš & Drozdová,
2010) represents the CIM level by business processes using the Data Flow Diagram
(DFD), and the PIM level by four UML diagrams: Use Cases Diagram, Activity
Diagrams, Sequence Diagrams, and Domain Models. While, (Bousetta, El Beggar, &
Gadi, 2013) provides a method to build the CIM that can be transformed (semi-)
automatically later to lower levels of abstraction in PIMs. The CIM is represented by
the BPM and use case model whereas the PIM level is represented using the Sequence
Diagram of System’s External Behavior (SDSEB) and DCD. This method is based on
the business rules to generate the DCD PIM level. In paper (Wu, Shin, Chien, Chao,
& Hsieh, June 2007) the CIM is composed of use case diagram, activity diagram and
robustness diagram, while the PIM is modeled by two parts: the behavioral part which
is presented by using the sequence diagram and the structural part which is depicted
using the class diagram.

Other methods that we have found in the literature do not repose on the

business processes such as (Fatolahi, Somé, & Lethbridge, 2008), or do not propose
how to transform CIM to PIM like in (Sharifi & Mohsenzadeh, 2012) and (Osis,
Asnina, & Grave, 2008).

We can conclude that the CIM level doesn’t cover, in general, its static,

dynamic and behavioral aspects. The traceability doesn’t assured in any level.
Moreover the proposed approaches can’t generate automatically the behavioral aspect
of the PIM from the CIM.

62 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

3. Our Proposal Approach

In this paper we present an approach that allows, firstly to represent a

complete view of a system from the computation independent viewpoint which
covers the static, functional and behavioral aspect of the CIM level. This level is
represented by the BPMN model, the UC-UML and its textual description formalized
by SBVR. And, secondly to represent the behavioral view of the PIM level
represented by the System Sequence Diagram (UML-SSD). This approach also
assures automatic transformations inside the CIM level and between the CIM level
and the PIM level.

Thus, our proposal consists of representing the CIM artifacts that satisfy its

static, dynamic and functional views. As shown in figure 2, the construction of CIM
level begins by the elaboration of the model of business processes and business
objects, using the Business Process Model and Notation (BPMN). Then, by
transforming at the same level the BPMN diagram to a Use Cases Diagram (UML-
UC) with its Textual Description based on SBVR standard (SBVR-TD). Next, we
transform the Use Cases Diagram with its textual description to a System Sequence
Diagram (UML-SSD) representing the behavioral aspect of the PIM-level.

Figure 2. Overview of the Approach

Addamssiri et al. 63

3.1. Modeling of CIM and PIM

According to our previous (Kriouile, Gadi, Addamssiri, & El Khadimi, 2014),

we have reached that the static aspect of the best CIM is described by the business
objects and the behavioral aspect is described by the business process. Both of them
apply the BPMN for their representations. The functional aspect of the CIM is
described by the requirement system that is represented by UC Diagram alongside the
textual description formalized by the SBVR. Besides the best PIM that covers the
behavioral and the static aspect must be represented by the SSD diagram and the
DCD diagram. The static aspect will be represented in future work.

3.2. Models’ Transformation Based on QVT

By using the QVT transformation language, we can define transformation

rules that map elements of one meta-model to the elements of another metamodel.
Once the transformation rules are defined, a transformation process uses these rules
and transforms an instance of source meta-model (Model source) into an instance of
target meta-model (Model target).

According to the taxonomy in (Yashwant & Manu, 2009) when the source

and the target models reside at the same abstraction level the transformation is named
horizontal, otherwise the transformation is called vertical. Then once the source and
the target models share the same meta-model the transformation titled the
Endogenous or else Exogenous. Moreover it’s possible to take the semantic of the
source model into account in the semantic transformation.

In our approach, at the CIM level it is identified bidirectional horizontal

transformations that establish the correspondence between the business process’
models defined with the BPMN-BPD and the UC-UML model. We ensure the
validity of this level by establishing the refinement process. Then we have defined a
vertical transformation which permits to move from CIM using UC-UML model into
the behavioral PIM Model represented by the SSD-UML model. The both
transformations are exogenous and semantic. Table 1 resumes the different
characteristics of all transformations in our approach.

64 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

Table 1. Transformation Description

3.3. CIM to CIM Transformations (CIM2CIM)

In our research, we attempted to model the CIM by diagrams that efficiently

represent its different views: static, behavioral and functional. We elaborate a diagram
that represents the different business’ process (BPMN-BPD) and we transform it to a
Use Case Diagram (UML-UC) and its textual description formalized by SBVR
(SBVR-TD). Afterwards, we define the transformation from UML-UC and TD-SBVR
to UML-UC to refine the level and allow changes of the input model of the approach.
The refinement process aimed at enriching, filtering and specializing the CIM level.

3.3.1. From BPMN to Use Case and TD-SBVR

Several main mapping are used to transform the BPMN Model that

conformed to the BPMN Meta-model (Figure 3) into the Use Case Model that
conforms to the Use Case Meta-model (Figure 4) and its TD-SBVR that conforms to
SBVR Meta-model (Figure 5).

Addamssiri et al. 65

Figure 3: Principal Fragment of the BPMN Meta-Model

Figure 4: Principal Fragment of the UC Meta-Model

66 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

Figure 5. Principal Fragment of the SBVR Meta-Model

As shown in the table 2, we present above the different mappings:

• The source model element “Pool” or “Lane” is transformed into the target model

element “Actor” with the same name.
• The “lanes within Pool” are transformed to “generalization relationship”.
• The Pool’s “activities” are mapped to “use cases”.
• The associations are established between actor corresponding to lane and the

different Use Cases corresponding to Activities.
• The “SequenceFlow” and “Messageflow” are mapped with “Include” relationship

that associate their use cases correspondents.
• The “Gateway” is mapped with “Extend” relationship which associates their use

cases correspondents, and defined the “condition”.
• The element “SuccesfulFlow” is mapped with the fact type “SuccessfulScenario”,

and then it’s associated with the concept noun “UseCases”, and “Actor”.
• The element “AlternativeFlow” is mapped with the fact type “Alternativescenario”,

and then it’s associated with the concept noun “UseCases” and “Actor”.
• The element “ErrorFlow” is mapped to a target model “Error scenario”, and then

it’s associated with the concept noun “UseCases” and “Actor”.
• The sub process type “loop” is mapped with the fact type “loop”.

Table 2 also shows in the column “QVT rules” each transformation rule with

their code source.

Addamssiri et al. 67

Table 2. BPMN to Use-Case Transformation QVT Rules

68 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

3.3.2. From Use Case to BPMN

We have transformed Use Case Diagram that is conformed to the Use Cases
Meta-model and its TD-SBVR that is conformed to SBVR Meta-model into BPMN
Diagram which is conformed to BPMN Meta-model.

Addamssiri et al. 69

As shown in the table 3, the different elements of UC-UML and its TD-SBVR
are transformed to BPMN model. Thus, the source model element “Actor” is
transformed into the target model element “Pool” with the same name, the
“Secondary Actor” is transformed into a “Lane” with the same name, the
“generalization” relation is transformed to “Lane within Pool”, all Actor’s “Use
Cases” are transformed into “Activities”, the “include relation” is transformed into a
“SequenceFlows”, the “extend relation” is transformed into “gateway”, the fact type
“Successful Scenario” is mapped with “SuccesfulFlow”, “AlternativeScenario” is
mapped with “AlternativeFlow”, and “Error Scenario” is mapped with “ErrorFlow”.

Table 3. Use-Case to BPMN Transformation QVT Rule

70 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

3.4. CIM to PIM Transformation

This transformation is used to transform Use Cases Model that is conformed

to Use Cases Meta-model and TD-SBVR that's conformed to SBVR Meta-model
existing in the CIM level into System Sequence Model that's conformed to System
Sequence Meta-model (Figure 6) existing in the PIM level. In which the system is
considered as a whole.

Addamssiri et al. 71

The QVT transformation rules developed to obtain from the source model
elements the target elements of SSD are classified in Table 4. A “Principal Actor” is
transformed into “Actor”, and the fact types in the TD-SBVR are transformed to
interactions between Actor and System: the fact type “Alt-Scenario” is mapped with
interaction fragment “Alt”, the “ErrScenario” is mapped with the interaction
fragment “Break” and the “SuccScenario” to “message from Actor to System”, or to
“System response to Actor”, and taking into account the “internal Message.

Figure 6: Principal Fragment of the SSD Meta-Model

72 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

Table 4. Use-Case to SSD Transformation QVT Rules

4. Evaluation

4.1. Case Study

In this section we present an example to illustrate our approach. We consider
the case of the business process of e-library books. This example models the
interaction between customers and the system. Any surfer on web can access to the
web site and search one book, they can read it online or download it. Also, they can
request a new book by filling a form. Web surfer must connect with their account or
subscribe if it's their first visit of the web site.

To implement the proposed approach for the chosen case study, we start with

the lower level sub-process business model. In Figure 7, we present the detailed
"Choose Book Sub-Process" organized in workflow and represented using the BPMN
notation.

Addamssiri et al. 73

Figure 7: BPD “Choose Book” Sub-Process of the Case Study “E-Library
Books”

4.1.1. BPMN to UC-UML and TD-SBVR

To obtain use cases diagram and its TD-SBVR, we use the transformation

rules stipulated at Section 3.3.1. The application of these transformation rules allows
to identify one actor "Customer" and then use cases: "Request online catalog",
"Receive request", "Receive online catalog", "Deliver online catalog", "Select eBook
from the catalog", "Fill form eBook needs", "Receive form eBook needs", "Analyze
from eBook needs", "Deliver eBook" and "Receive eBook". Figure 9 illustrates the
use cases model and the figure 10 depicts the textual description model formalized on
SBVR (TD-SBVR model) of the case study.

74 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

Figure 8. Use Cases Diagram of the Case Study

Figure 9: Extract from Textual Description of the Case Study Formalized on
SBVR

Addamssiri et al. 75

4.1.2. UC-UML and TD-SBVR to BPMN

The mapping rules proposed at the section 3.3.2. allow to generate BPMN

Model from UC-UML Model and its TD-SBVR. Thus, we can identify two Pools:
"Customer" and "System", and the activities: "Request online catalog", "Receive
request", "Receive online catalog", "Deliver online catalog", "Select eBook from the
catalog', 'Fill form eBook needs', 'Receive form eBook needs', 'Analyze from eBook
needs', 'Deliver eBook' and "Receive eBook". The successful flow "Choice in the
catalog" of the gateway generated from the success scenario "Choice in the catalog"
of the TD-SBVR, the Error Flow "Other" correspond to Error Scenario "Other’" and
the Alt Flow "Specific choice" correspond to Alt Scenario "Specific choice".

4.1.3. CIM to CIM QVT Code

Figure 10 shows one example of the QVT code applied for our example. It

illustrates the mapping between the Activity “Request online catalog” in the Pool
“Customer” and the use case “Request online catalog” associated to the Actor
“Customer” in both directions.

76 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

Figure 10. CIM2CIM QVT Code

4.1.4. Generating the SSD-UML from UC-UML and TD-SBVR

From the Use Case Model, by applying the mapping rules proposed in table 4

at the section 3.4., we can identify the principal actor that is the “Customer”. And
from the TD-SBVR we can identify the “action/response” from/to System: Loop,
Opt, and Break. The Opt “Form eBook needs’ correspond to Alt Successful “Form
eBook needs” and the Break ‘Choose Cancel’ corresponds to Error Scenario “Choose
cancel”.

Addamssiri et al. 77

The generated SSD of the use case “choose eBook” is presented in figure 11.

Figure 11: The SSD of the Choose Ebook Use Case

4.1.5. CIM to PIM QVT Code

We illustrate in figure 12, the mapping from the Alt Scenario “Choice from

catalog” to “Opt” and the “Cancel choice” to “Break”.

78 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

Figure 12: CIM2PIM Transformation

4.2. Criterion Evaluation

After evaluating our approach with a case study, we propose to evaluate it

according to four evaluation criteria: "CIM Coverage", "PIM Behavioral aspect",
"CIM to PIM transformation" and "CIM refinement".

Addamssiri et al. 79

In table 5, we present the evaluation of seven approaches with our proposal
based on the criteria mentioned before. The comparison of those seven approaches
was extracted from our previous work (Kriouile, Gadi, & Balouki, CIM to PIM
Transformation: A criteria Based Evaluation, July-August 2013). Regarding to “CIM
coverage”, no method of those seven methods fully covers the three aspects of the
CIM: Static, Behavioral and Functional view of CIM. While regarding to "PIM
Behavioral Aspect", five out of seven methods can generate behavioral model of the
PIM. However, concerning the "CIM to PIM transformation" criterion, we can see
that the most of the methods do not even provide guidelines to ensure traceability
between CIM and PIM, the definitions of the methods are not complete, and the
transformation still require a human intervention. Finally, no method of those seven
methods ensures the CIM refinement.

Consequently, according to the criteria mentioned above we can consider our

approach as complete. It covers the static, the dynamic and the behavioral view of the
CIM level, as well as assures their refinement and can generate automatically the
behavioral aspect of the PIM level.

Table 5. Criteria Based Evaluation

Legend: Y: Yes; N: No; P: Partial

80 Journal of Computer Science and Information Technology, Vol. 2(3 & 4), December 2014

5. Conclusions and Future Perspectives

Being aware of the importance of the MDA high parts in bridging the gap

between the business experts and the system analyses experts, we have so far
presented an approach defining, firstly, the artifacts of the CIM. They cover its static,
behavioral and functional aspects based on BPMN-BPD, UC-UML and TD-SBVR
models. Secondly the approach also ensures the validation and the refinement of the
CIM level by establishing a bidirectional transformation between UC-UML and
BPMN.

Moreover, this approach specifies the behavior PIM Model by SSD-UML

Model which is automatically generated using the QVT transformation language from
UC-UML Model and its TD-SBVR.

The method was evaluated trough using both a concrete case study

concerning an e-library books system and criteria based evaluation.

The proposed method in this paper completes our previous works (Kriouile,

Gadi, Addamssiri, & El Khadimi, 2014) and (Kriouile, Addamssiri, Gadi, & Balouki,
2014) subscribing in global method which aims at automating the whole CIM to PIM
transformation. For future perspective, we intend to develop a graphical tool that
allows designing the artifacts and successively running transformations defined in the
present approach.

References

Agrawal, A. (2003). GReAT: a metamodel based model transformation language. 18th IEEE

International Conference on Automated Software Engineering.
Braun, P., & Marschall, F. T. (2003). The Bidirectional Object Oriented Transformation. RN.
Bajwa, I. S., Lee, M. G., & Bordbar, B. (2011). SBVR Business Rules Generation from Natural

Language Specification. AAAI Spring Symposium: AI for Business Agility, 2-8.
Bousetta, B., El Beggar, O., & Gadi, T. (2013). A methodology for CIM modelling and its

transformation to PIM. Journal of Information Engineering and Applications, 3(2), 1-21.
Falleri, J., Huchard, M., & Nebut, C. (2006). Towards a traceability framework for model

transformations in kermeta. European Conference on Model-Driven Architecture
Traceability Workshop (ECMDA-TW), Bilbao,Spain.

Fatolahi, A., Somé, S. S., & Lethbridge, T. C. (2008). Towards a semi-automated model-driven
method for the generation of web-based applications from use cases. 4th Model Driven
Web Engineering Workshop (p. 31).

Jouault, F., & Kurtev, I. (2005). Transforming models with ATL. International Workshop on
Model Transformations in Practice (MTiP).

Addamssiri et al. 81

Kherraf, S., Lefebvre, E., & Suryn, W. (2008). Transformation from CIM to PIM Using Patterns
and Archetypes. 19th Australian Conference on Software Engineering, (pp. pages 338–
346).

Kardoš, M., & Drozdová, M. (2010). Analytical method of CIM to PIM transformation in Model
Driven Architecture (MDA). JOURNAL OF INFORMATION AND
ORGANIZATIONAL SCIENCES, 34, 89-99.

Kriouile, A., Gadi, T., & Balouki, Y. (July-August 2013). CIM to PIM Transformation: A criteria
Based Evaluation. IJCTA, Vol 4 (4)(ISSSN:2229-6093), 616-625.

Kriouile, A., Gadi, T., Addamssiri, N., & El Khadimi, A. (2014). Obtaining Behavioral Model of
PIM from the CIM. Multimedia Computing and Systems (ICMCS), 2014 International
Conference. IEEE, 949 - 954.

Kriouile, A., Addamssiri, N., Gadi, T., & Balouki, Y. (2014). Getting the Static Model of PIM
from the CIM. 3rd Colloquium IEEE on Information Science and Technology (CiSt'14).
Tetuan.

Larman, C. (2004). Applying UML and Patterns : An Introduction to Object-Oriented Analysis
and Design and the Unified Process. Addison-Wesley Professional.

Miller, J., & Mukerji, J. (2003). MDA Guide Version 1.0.1. OMG.
OMG. (July 2001). Model Driven Architecture, ormsc/2001-07-01.
Osis, J., Asnina, E., & Grave, A. (2008). Computation independent representation of the problem

domain. MDA. J. Software Eng, 2(1), 19-46.
OMG. (2011, junuary 1). QVT, Meta Object Facility (MOF) 2.0 Query / View/ Transformation

Specificatio. Récupéré sur
http://www.omg.org/spec/QVT/1.1/

OMG. (September 2013). Business Process Model and Notation (BPMN), Version 2.0.1. OMG,
http://www.omg.org/spec/BPMN.

OMG. (2013, November). Semantics of Business Vocabulary and Business Rules (SBVR).
Récupéré sur http://www.omg.org/spec/SBVR/1.2/PDF

Robert, F., & Bernhard, R. (2007). Model-driven Development of Complex Software: A Research
Roadmap. ICSE .

Rodríguez, A., Fernández-Medina, E., & Piattini, M. (2008). Towards obtaining analysis-level class
and use case diagrams from business process models. Advances in Conceptual Modeling–
Challenges and Opportunities. Springer Berlin Heidelberg., 103-112.

Streekmann, N., Steffens, U., Möbus, C., & Garbe, H. (2006). Model-driven integration of
business information systems. Softwaretechnik-Trends, 26(4).

Sharifi, H. R., & Mohsenzadeh, M. (2012). A New Method for Generating CIM Using Business
and Requirement Models. World of Computer Science and Information Technology
Journal (WCSIT), 2(1), 8-12.

Wu, J. H., Shin, S. S., Chien, J. L., Chao, W. S., & Hsieh, M. C. (June 2007). An extended MDA
method for user interface modeling and transformation. The 15th European Conference
on Information Systems (pp. 1632-1641).

Yashwant, S., & Manu, S. (2009). Models and Transformations in MDA. Computational
Intelligence, Communication Systems and Networks, 253-258.

Zhang, W., Mei, H., Zhao, H., & and Yang, J. (2005). Transformation from CIM to PIM: A
Feature-Oriented Component-Based Approach. Model Driven Engineering Languages
and Systems volume 3713 of Lecture Notes in Computer Science, pages 248–263.
Springer Berlin / Heidelberg.

