
Journal of Computer Science and Information Technology
June 2015, Vol. 3, No. 1, pp. 01-13

ISSN: 2334-2366 (Print), 2334-2374 (Online)
Copyright © The Author(s). All Rights Reserved.

Published by American Research Institute for Policy Development
DOI: 10.15640/jcsit.v3n1a1

URL: http://dx.doi.org/10.15640/jcsit.v3n1a1

The Downsides of Software Refactoring

Jason R. Frier1 & Robert F. Roggio2

Abstract

Software quality is often measured in terms of both external usually indirectly
measureable quality attributes and internal often directly measurable software metrics.
While both professionals and academics alike are attracted to numbers that can be
analyzed and compared and inferences made, these are not often available or, at best,
are difficult to acquire. Sometimes external quality factors such as maintainability and
reusability can be assessed without mapping to internal quality metrics and often
direct software measures are taken without regard to indirectly measurable quality
attributes. Still other times, we like to simply look internally and count the number of
methods in a class or carefully look at the size of a class, or perhaps the number of
parameters passed to a method and consider such metrics measures of software
quality. These interests have given rise to a considerable amount of research on
refactoring, but, unfortunately, research continues to indicate that some refactoring
efforts can lead to poor software quality. This paper exams some of the literature on
refactoring in order to encapsulate both positive and negative impacts of refactoring:
where refactoring might be useful and where it might be avoided.

Keywords: refactoring, code quality, internal refactoring, external quality attributes

I. Introduction

In today’s intense world of software engineering, one of the most pressing

matters is how to make software easier to maintain while keeping costs down. The
reality is that as a software system ages, the likelihood is that maintaining the software
may well become a costly endeavor. This is a result of code “decay.”

1 School of Computing, University of North Florida, Jacksonville, FL USA 32224.
Email: northflorida904@gmail.com
2School of Computing, University of North Florida, Jacksonville, FL USA 32224.
Email: broggio@unf.edu

2 Journal of Computer Science and Information Technology, Vol. 3(1), June 2015

Code smells are symptoms that are detected within the software that can
signal the need to address specific code decay. Refactoring is the preferred method to
deal with code decay, both in fixing and preventing it. According to Kessentini, there
are two steps to refactoring code. These two steps are: 1.) determining when a system
needs to be refactored, and 2.) determining how to best refactor the problem by
determining which refactoring actions need to be performed. The commonly used
term, “Code Smells” refers to structures within code that suggest a refactoring
technique might be used to improve the code structure. (Kessentini et al. 2013).
According to Buschmann, refactoring isn’t just “the process of changing a software
system in such a way that it does not alter behavior of the code yet improves its
internal structure.” (Buschmann 2011). Refactoring must meet the following
conditions: it can only improve developmental qualities of the code, like
maintainability; published contracts cannot be changed; and refactoring cannot be a
substitute for actual bug fixing. Thus, adding new functionality would not qualify as a
refactoring activity, as it violates the first rule, namely that only developmental
qualities such as maintainability are allowed under the refactoring umbrella.
Buschmannalso states that it’s usually only the design of the code that “smells” bad,
since refactoring almost certainly always occurs on working code, that is, code that
currently provides functionality. However, Buschmanalso admits that refactoring is an
indispensable tool to the developer, allowing him/her to maintain the health of the
system while saving money that would be incurred through future maintenance
rework.

One of the first to actually publish a work on the topic of refactoring

(specifically, refactoring object-oriented systems) was William Opdyke in his doctoral
thesis entitled, “Refactoring Object-Oriented Frameworks”. In his thesis, Opdyke
talked about the need to be able to design object-oriented systems in such a way that
each subsequent design iteration could accommodate the accompanying changes
made to the system, thus making overall design of the system easier, since it could
accommodate frequent change. He proposed automated “restructuring”, or
refactoring, of the system as an approach to ensure that the system was able to remain
flexible to change.

Frier & Roggio 3

 However, Opdyke’s thesis references the fact that practitioners in the
software development field felt that object-oriented systems were easier to change
than procedural systems, and this seems to lead to the conclusion that software
practitioners had been practicing refactoring on not only object-oriented systems, but
procedural systems as well, for some time prior to the publishing of his doctoral thesis
in 1992. Opdyke’s paper is nonetheless often credited as one of the theoretical
foundations upon which modern refactoring techniques are based on.

II. Empirical Studies in Refactoring

A.Empirical Results of Refactoring – the Shrivastava Study (2009)

A study published by Vishal and Suprika Shrivastava addresses a number of

practical complexities of refactoring. The application that formed the basis of their
study was known as Inventory Delux 1.03 and contained only three classes with
thirty-eight total methods. The system also contained three additional files. The
authors of the study used the following metrics to assess where “code smells”might
lie in the system: Number of Attributes (NOA), Number of Classes (NOC), Number
of Methods (NOM), Depth of Inheritance Tree (DIT), Cyclomatic Complexity
(CC)(McCabe, 1976), and Total Lines of Code (TLOC). (Shrivastava) To begin with,
the authors detected a smell in a GUI class, which was a large class with many
responsibilities including displaying components of each tabbed pane of the GUI
along with each function performed in each pane. Two methods within the class were
also very long, making the class difficult to understand. The class had a Cyclomatic
Complexity of 8.875 before refactoring and one of the two methods had a CC of 56.
Using the refactoring method Extract Class, a total of six classes were extracted. The
responsibility of displaying and working inventory-related functionalities was carefully
assigned to these six new classes, the result of which was a significant improvement in
understandability. The complexity of the original class was reduced to 5.125, and the
complexity of the large method having a CC of fifty-six was reduced to twenty-six.
The length of this one method was reduced by 179 lines of code. The Shrivastava's
continued their refactoring using Extract Method. One class contained a constructor
with duplicate code found in one of the class’s methods. Extract Method was
performed, and as a result one new method was created out of the constructor and
the other method.

4 Journal of Computer Science and Information Technology, Vol. 3(1), June 2015

This new method was reused when necessary. Shrivastava cites that this
refactoring reduced the total lines of code for the class as a result of the elimination of
the duplication. The GUI for the application was developed using Java Swing.
Specifically JPanel class was implemented. Refactoring was applied to not only the
JPanel class but also to J Label and J Text Field. Extract Subclass was applied with a
result of creating three additional classes. Rather than using the aforementioned
classes, these extended classes were used. Because of this refactoring, while
considerable duplication was eliminated, the DIT increased. Shrivastava reported less
understandability and increased complexity.

In sum, the overall impact on software quality metrics for the Inventory

Delux 1.03 application is as follows: The NOA changed from an average of 37 to
11.3 over the course of fourrefactorings (resulting from more classes and
redistribution of the attributes). The NOC increased as more classes were extracted,
resulting in an increase in complexity and a corresponding increase in DIT. NOC
increased from three to twelve over the course of fourrefactorings, as more classes
were developed. NOM decreased from an average of 12.67 to 5.5 over four versions,
which makes sense as there are fewer classes. Cyclomatic Complexity decreased on
average from 3.39 to 2.43 with a decrease in the maximum Cyclomatic Complexity
from 56 to 13 over four revisions. The TLOC decreased from 1103 to 508 over the
course of these efforts as significant duplication was expunged. As stated, duplication
was drastically reduced, but the DIT increased on average from 2.67 to 4.5 over the
course of four refactoring exercises. Complexity increased as new classes and
subclasses were extracted. The findings of the Shrivastava study suggest that overall
code structure improved over the course of four refactorings of the application. The
number of lines of code decreased significantly, making the application smaller, more
maintainable, and ultimately easier to understand. However, the Extract Class
refactoring led to an increase in the number of classes, and an increase in the DIT,
with an attendant overall increase in complexity. According to Shrivastava, while the
quality of the application improved, this same application became more complex
rendering it more difficult to maintain.

B. More Empirical Results of Refactoring – the Dandashi Study (Dandashi, 2002)

In a study by Dandashi, the possibility to develop correlations between

directly measurable software metrics and indirectly measurable quality attributes was
undertaken.

Frier & Roggio 5

According to Dandashi, directly measurable software metrics are code metrics
based on the syntax and behavior of that code, while indirect measurable quality
attributes are those that typically cannot be ascertained from code syntax and
behavior. In his research, Dandashi set out to automate the gathering of software
metrics for C++ components. The metrics chosen for his study included both class
level and method level metrics. Method level metrics included McCabe’s Cyclomatic
Number (MCC), Halstead’s Volume (Halstead, 1977), and Physical Source Statements
(PSS), while class level metrics included Weighted Methods per Class (WMC), Depth
of Inheritance tree (DIT), Number of Children (NOC), Response For a Class
(RFC)(Number of Distinct Methods and Constructors invoked by a Class), Coupling
Between Objects (CBO), and Lack of Cohesion in Methods (LCOM).

These metrics were gathered via an automated tool. Then, groups of software

practitioners and graduate students were presented with a survey asking them to
assess indirect quality attributes of the C++ components that were run through the
automated metric gathering tool. Indirect quality attributes included adaptability,
flexibility, maintainability, understandability, portability, reliability, expandability,
completeness, correctness, and modularity. The survey participants were asked to
evaluate the code components to assess levels of these quality attributes. Once the
surveys were collected, correlation coefficients were calculated using SPSS to
determine the relationship between the directly measurable metrics and the indirectly
measurable quality attributes. The results of this study provide some very interesting
data. As DIT and NOC increased (directly measurable software metrics), adaptability,
completeness, maintainability, and understandability decreased (indirectly measurable
software quality attributes). As RFC and CBO decreased (more directly measurable
software metrics), the indirect measurable quality attributes increase. However, as
coupling decreased (class level directly measurable software metric) as a result of
larger, more self-contained classes, a decrease in adaptability, maintainability, and
understandability (indirectly measurable quality measures) was discovered. Further
research by Dandashi revealed that complexity and LOC were found to be directly
proportional to indirect software quality attributes, while NOC, DIT, RFC, and CBO
are inversely proportional to indirect software quality attributes. (Dandashi, 2002)

6 Journal of Computer Science and Information Technology, Vol. 3(1), June 2015

C. More Empirical Results of Refactoring – the Elish and Alshayeb Study (Elish,
2011)

Elish’s study is very significant as it expanded the work by Dandashi by taking
code components, measuring their internal directly measurable metrics (based upon
Dandashi’s metrics) and then performing nine different refactoring activities on that
code. After refactoring activities, he then re-analyzed a number of software metrics to
note any changes due to the refactoring. Changes in metrics due to refactoring were
then mapped to external, indirect quality attributes based on the findings from
Dandashi’s study. Refactoring activities chosen by Elis hand Alshayeb, as cited in
their study (Elish 2011) included Consolidate Conditional Expression, Encapsulate Field,
Extract Class, Extract Method, Hide Method, Inline Class, Inline Method, Inline Temp, and
Remove Setting Method. The results of their refactoring exercises using directly
measurable quality metrics were:

 Consolidate Conditional Expression: rendered the class less cohesive; increased

NOM and decreased LOC; decreased adaptability and maintainability
 Encapsulate Field: Made class less cohesive, increased NOM and LOC; increased

adaptability and maintainability
 Extract Class: Made class more cohesive, decreased NOM and LOC, increased

CBO, increased number of classes; decreased adaptability and maintainability
 Extract Method: Made class less cohesive, increased NOM and LOC; increased

adaptability and maintainability
 Inline Method: Made class more cohesive, reduced NOM and LOC; decreased

adaptability and maintainability

As discussed in their study, correlations were made between certain
refactoring activities and internally directly measurable metrics and external quality
attributes. In short, the refactoring activities Consolidate Conditional Expression, Extract
Class, and Inline Method decreased adaptability and maintainability, while Encapsulate
Field and Extract Method increased adaptability and maintainability. It seems safe to
assert that they have shown that while some refactoring activities improve overall
software quality, other activities may be a clear detriment to software quality.

Frier & Roggio 7

D. More Empirical Results of Refactoring – the Shatnawi and Li Study

RaedShatnawi and Wei Li (Shatnawi and Li, 2011) undertook a similar study in
which they proposed a set of refactoring heuristics that were used to correlate internal
software metrics with external quality attributes, and in doing so set out to validate the
extent to which refactoring has a positive or negative impact on software quality.
They proposed a quality model known as the QMOOD (Quality Model for Object
Oriented Design). The QMOOD is a hierarchical model used to assess external
quality factors using internal design metrics that can be used at both the system and
the component levels. Thus this research took a different approach than their
predecessor’s work. The Shatnawi and Li Study looked at four external quality
attributes. First, they considered reusability. Reusability was defined as the degree to
which a software module could be used in other programs or systems. Secondly, they
considered flexibility, which they defined the degree to which a system or component
can be used within environments for which it wasn’t designed. Thirdly, extendibility
was chosen to measure the ease with which the system or component can be modified
to increase its functional capabilities and lastly, effectiveness was chosen as a measure to
see if a component achieves desired functionality. These four external quality
attributes were chosen inthis study to assist in measuring the degree to which
refactoring improved software quality. The QMOOD model linked the following
internal metrics (ahead) with the previously-mentioned four quality attributes. First,
reusability was linked to coupling, cohesion, messaging, and design size. Flexibility was
linked to encapsulation, coupling, composition, and polymorphism. Extendibility was
linked to abstraction, coupling, inheritance, and polymorphism, and effectiveness was
linked to abstraction, encapsulation, composition, inheritance, and polymorphism.

Shatnawi and Li explained how the QMOOD model was used in Extract Class

refactoring. They found that when Extract Classwas undertaken, internal measurable
metrics such as design size increases, abstraction stays the same, encapsulation stays
the same, coupling increases, cohesion increases, composition increases, inheritance
stays the same, polymorphism stays the same, and messaging stays the same,while
reusability, flexibility, and effectiveness all improve, and extendibility deteriorates. So
simply using this refactoring by itself had varying impacts on software quality.
Interestingly, Shatnawi and Lialso showed there were what they termed safe
refactorings and unsafe refactorings. Safe refactors left the quality of the software in a
desirable state.

8 Journal of Computer Science and Information Technology, Vol. 3(1), June 2015

In contrast, unsafe refactors had a detrimental impact on software quality. An
example of a safe refactoring was the Encapsulate Field action. The encapsulate field
action improved reusability, flexibility, and effectiveness, and had no impact on
extendibility. The software was left in an overall improved state. An example of an
unsafe refactoring is the Pullup Method action. This action was shown to have a
negative effect on all the external quality attributes, and therefore left the software in a
deteriorated state in terms of overall quality. Lastly, Shatnawiand Li suggested
allocating refactoring actions into categories. The Composing Methods Category had a
high impact over 50% of the time on the internal metrics of messaging and coupling.
The Moving Features Between Objects Category of refactors had a high impact over 50% of
the time on the internal metrics of coupling and cohesion. The Organizing Data
Category of refactors had a high impact over 50% of the time on the internal metrics of
messaging, coupling, design size, and composition. The Simplifying Conditional
Expressions Category of refactors had a high impact over 50% of the time on the
messaging internal metric. The same was true for the Making Method Calls refactoring
category.

E. More Empirical Results of Refactoring – the Kannangaraand Wijayanayake Study
(2013) A Different Approach

S.H. Kannangaraand Wijayanayakeperformed a study on the impact of
refactoring on code quality. Refactoring techniques used in the study were Introduce
Local Extension, Duplicate Observed Data, Replace Type Code with Subclasses, Replace Type
Code with State/Strategy, Replace Conditional with Polymorphism, Introduce Null Object, Extract
Subclass, Extract Interface, Form Template Method, and Push Down Method. Their study
evaluated external quality factors without mapping to internal quality metrics, as was
the case in other studies. The external quality factors evaluated in this study were
maintainability, which they decomposed into analyzability and changeability; and efficiency,
specifically resource utilization and time behavior (These are discussed ahead) The study
was conducted on a system that implemented C# using Visual Studio as the
development environment. Their study was conducted in two steps. In Step 1,
participants were divided randomly into two groups: the refactored code group and
the non-refactored code group. During Step 1, sixty students were chosen based on
previous programming experience and were randomly place into one of the two
aforementioned groups. They were first given questions to answer, and then were
given code containing bugs and were asked to fix the bugs.

Frier & Roggio 9

This was the case for both the experimental (refactored code) and control
(non-refactored code) groups. Kannangaraand Wijayanayakeclaim that the bug fixes
addressed the issue of changeability. Step 2 addressed the issues of resource utilization,
namely memory consumption and time behavior for the control and experimental groups of
code. Step 2 was carried out in a software testing environment. Before the study was
conducted, the four hypothesis categories were established. The first hypothesis group
predicted whether the analyzability of the refactored code would be higher or lower
than the non-refactored code. The second hypothesis group predicted whether the
changeability of the refactored code would be more difficult or easier than the non-
refactored code. The third hypothesis category dealt with whether the response time of
the refactored code would be longer or shorter than the non-refactored code. The fourth
hypothesis category dealt with whether the efficient utilization of computer resources was
lower or higher for the refactored code as opposed to the non-refactored code.

The results of the Kannangara and Wijayanayake study are as follows in

regards to hypothesis predictions: The analyzability of the refactored code was lower
than the non-refactored code, except for the refactoring technique Replace
Conditional with Polymorphism. The changeability was more difficult for refactored
code than for non-refactored code. The response time of the refactored code was
longer than for the non-refactored code for a majority of the techniques employed.
For resource utilization, the techniques Duplicate Observed Data and Extract
Subclass resulted in better utilization scores. For the rest of the refactoring
techniques, there was insufficient evidence to prove that there was an improvement of
resource utilization for the refactored code. All refactoring techniques, except for
Replace Conditional with Polymorphism, showed a propensity to deteriorate the
quality of the code more than improving it, with the majority of the techniques
showing a 75% deterioration rate. Replace Conditional with Polymorphism was the
only refactoring technique used that showed a propensity to improve the quality of
the code. From the ten refactoring techniques used in the study, analyzability,
changeability, and time behavior showed an overwhelming deterioration in quality.
Resource utilization remained largely unchanged, showing only a small improvement.

10 Journal of Computer Science and Information Technology, Vol. 3(1), June 2015

III. Application, Conclusions, and Future Work

A. Refactoring Mitigates Change

It is important to note that refactoring is a perfective maintenance technique
that may be used to improve the internal structure of existing code while ensuring its
external behavior unchanged. This principle is essential. In theory, changes to a
system result may result in more complex systems that are difficult to maintain and
understand. In addition, changes introduced to a system can make that system
difficult to reuse. Refactoring is one of the primary ways in which developers mitigate
change. (Wake, 2004)

B. Refactoring as a Set of Safe Transformations

Refactoring should take place as safe transformations (Wake, 2004).
Refactoring, in theory, always leaves the code in a better state in which it was
discovered. Research reveals that this may not necessarily always be the case. This is
always the goal, however, of refactoring. Wake says that refactoring does not mean
making just any change to the code; rather, if new functionality is added to the system,
then this is not refactoring and refactoring did not take place. Refactoring also does
not involve generating new functionality from “scratch”. One goal of refactoring is to
preserve the knowledge contained in the existing code. The transformations of code
absolutely need to be “safe” and code definitely should not be left in a non-working
state, as this would violate the agile manifesto. The results of research presented
indicates that refactoring does not always benefit the software system in question.
Sometimes, according to the literature, refactoring will improve thestructure of the code
while lessening the overall quality of the software system, and conversely.

C. Refactoring and Internal Software Metrics and External Quality Attributes

A number of studies and their results assessing refactoring as these techniques
apply to internal program metrics and external quality attributes have been presented.
The literature is filled with additional case studies. In reducing scope, this paper has
looked at studies addressing internal directly measurable software metrics and indirect
quality attributes and their relationships, if any, in accordance with several studies.
One of the key aspects involved in the studies pertaining to refactoring and its impact
on software quality is the concept of metrics.

Frier & Roggio 11

There are usually two main types of metrics employed: internal, directly
observable metrics such as Lines of Code and Lack of Cohesion Measure and external
quality attributes that are often more difficult to assess quantitatively. These include
quality factors such as maintainability, changeability, and reusability. Many researchers
attempt to map the direct internal metrics to external attributes. Some researchers,
such as Elish and Alshayeb, used prior research to map directly measurable quality
metrics to external quality factors. Others, such as Kannangara and Wijayanayake,
measured external quality factors directly, without mapping to internal quality metrics.
In the latter’s case, this was done primarily through experimental groups answering
questions and performing software fixes on bugs, as well as factors such as resource
utilization being measured in a controlled lab environment. It becomes clear after
looking at only a few research studies that there are clear tradeoffs that should be
considered when undertaking refactoring. Certain refactoring actions like Extract Class
tend to create more classes, which increases the Depth of Inheritance Tree, which
increases overall complexity. Other refactoring actions, such as Extract Method, can be
used to reduce overall Total Lines of Code and reduce duplication in the code, which
decreases the size of the application and increases maintainability, thereby seemingly
increasing overall software quality for the application.

D. Future Work

What remains to be seen is this: How effective are mappings between directly
measurable internal metrics and external quality attributes? Both are so extremely
important to overall software quality. To what extent does increasing maintainability
and size of application warrant increasing application complexity? Is complexity
something that can always be sacrificed when it comes to decreasing the TLOC and
reducing duplication? Is reducing duplication more important than increasing
complexity? There seems to be a complicated interconnectedness when it comes to
refactoring. Shatnawiand Li’s study suggests that grouping refactoring actions into
categories on which have a high impact on the internal metrics and which ones do not
ultimately gives the development team more knowledge of their environment, and
they will be better suited to choose and pick which refactoring actions to perform.
Overall, by looking at how individual refactoring actions improve or deteriorate the
quality of the code, a development team will be more educated. To say that
knowledge is power in this situation is a bit of an understatement.

12 Journal of Computer Science and Information Technology, Vol. 3(1), June 2015

Understanding which refactoring actions will affect the code in certain ways
makes the task of creating maintainable, efficient software that much easier for the
developers. Refactoring seems to both improve and hinder software quality at the
same time. This may not seem to be such an important thing when dealing with small
applications that have fewer than twenty classes. But what about large, complex
applications? Performing the Extract Class refactoring on such an application will
likely create even more classes. Is this something that is worthwhile and beneficial for
developers? It is clear from the research that much more research is indeed warranted.
Refactoring is a mixed blessing.

References

Buschmann, Frank. “Gardening your Architecture, Part 1: Refactoring.” IEEE Software.

2011; Downloaded from Web: 20 December
 2014,http://eds.a.ebscohost.com.dax.lib.unf.edu/eds/detail/detail?vid=6&sid=490a

5e07-cfd6-4543-863b-
f6613b336922%40sessionmgr4001&hid=4210&bdata=JnNpdGU9ZWRzLWxpdmU
%3d#db=iih&AN=62026654

Dandashi, Fatma. “A Method for Assessing the Reusability of Object-Oriented Code Using a
Validated Set of Automated Measurements.” ACM 2002.Downloaded September
2014:
http://dl.acm.org.dax.lib.unf.edu/citation.cfm?id=508791.508985&coll=DL&dl=AC
M&CFID=464392331&CFTOKEN=63296891

Elish, Karim, and Mohammad Alshayeb. "A Classification Of Refactoring Methods Based On
Software Quality Attributes." Arabian Journal For Science & Engineering (Springer
Science & Business Media B.V.) 36.7 (2011): 1253-1267. Academic Search Complete.
Downloaded from Web. 12 Sept.

 2014.http://eds.b.ebscohost.com.dax.lib.unf.edu/eds/detail/detail?vid=2&sid=142e
453b-42d7-4099-845e-
d3752604b0fc@sessionmgr111&hid=112&bdata=JnNpdGU9ZWRzLWxpdmU=#d
b=a9h&AN=67186817

Halstead, Maurice H.. Elements of Software Science. Amsterdam: Elsevier North-Holland,
Inc., 1977, ISBN 0-444-00205-7.

Kannangara, S.H. and W.M.J.I. Wijayanayake. “Impact of Refactoring on External Code
Quality Improvement: An Empirical Evaluation.” International Conference on
Advances in ICT for Emerging Regions. IEEE 2013. Downloaded from Web. 25
Nov
2014.http://ieeexplore.ieee.org.dax.lib.unf.edu/xpl/articleDetails.jsp?tp=&arnumber
=6761156&queryText%3DImpact+of+Refactoring+on+External+Code+Quality+I
mprovement%3A+An+Empirical+Evaluation

Frier & Roggio 13

Kessentini, Marouane, Rim Mahaouachi, Khaled Ghedira. “What you like in design use to
correct bad smells.” Software Quality Journal. 2013. Downloaded from Web: 19
December 2014,

 http://eds.a.ebscohost.com.dax.lib.unf.edu/eds/detail/detail?vid=4&sid=490a5e07-
cfd6-4543-863b-
f6613b336922@sessionmgr4001&hid=4113&bdata=JnNpdGU9ZWRzLWxpdmU=
#db=iih&AN=90015765

McCabe, "A Complexity Measure", IEEE Transactions on Software Engineering, December
1976, p.308–320.

Opdyke, William F. “Refactoring Object-Oriented Frameworks.” Doctoral thesis, 1992,
Downloaded from Web: 19 December 2014,
http://www.ai.univ-paris8.fr/~lysop/opdyke-thesis.pdf

Shatnawi, Raed and Wei Li. “An Empirical Assessment of Refactoring Impact on Software
Quality using a Hierarchical Quality Model.” International Journal of Software
Engineering and its Applications. Oct. 2011. Downloaded from Web. 12 Sept.
2014http://eds.b.ebscohost.com.dax.lib.unf.edu/eds/detail/detail?vid=5&sid=142e4
53b-42d7-4099-845e-
d3752604b0fc%40sessionmgr111&hid=108&bdata=JnNpdGU9ZWRzLWxpdmU%
3d#db=iih&AN=67545955

Shrivastava, Suprika, and Vishal Shrivastava. “Impact of Metrics based Refactoring on the
Software Quality: A Case Study.”IEEE 2009. Downloaded from Web. 24 Sept.
2014.http://ieeexplore.ieee.org.dax.lib.unf.edu/xpl/articleDetails.jsp?tp=&arnumber
=4766459&queryText%3DImpact+of+Metrics+based+Refactoring+on+the+Softw
are+Quality%3A+A+Case+Study

Wake, William C. Refactoring Workbook. Boston. Pearson Education 2004, Addison-Wesley
Professional, ISBN-10-0321109295

