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Abstract 
 
 

During the recent decade, segmentation algorithms have been applied extensively to 
medical images in order to assist physician treating and diagnosing variety of diseases. 
Among all types of medical images, X-ray imaging is one of the frequently used 
imaging methods, especially for diagnosing bone diseases. Great numbers of 
segmentation methods have been applied on X-ray images aiming to segment bones 
with higher accuracy; however, it is hard to find a single method that is capable of 
segmenting all body parts with equal level of quality. Therefore, researchers put 
significant efforts on the combination different methods or improvement of existing 
methods using some techniques to achieve a desired segmentation outcome. In this 
research, improvement and refinement methods are proposed for three well-known 
clustering algorithms, namely the K-means, fuzzy c-means and spatial fuzzy c-means 
algorithms. The proposed methods include a novel entropy guided improvement 
strategy for clustering and a statistics based cellular rule engine for further refinement 
of pixel clusters. The improved algorithms are applied to X-ray images and 
experimental evaluations in comparison to well-known methods exhibit that 
significant improvements are achieved for all test cases.   
 

 
Keywords: X-Ray Bone Segmentation; K-means; Fuzzy c-means; Spatial Fuzzy c-
means; Entropy; Rule-based refinements. 

 
I. Introduction 

 
The process of extracting regions of interest from an image is known as image 

segmentation. It is mostly considered as the first step and a critical task of automatic 
image analysis.  
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In the automatic image segmentation, due to having no interaction with users, 
reaching highly accurate results is usually a hard problem. A great number of 
researchers have attempted to raise the accuracy of image segmentation and 
applications have been made in vast majority of areas such as analysis of satellite and 
medical images, face detection, and etc. In the past decade, segmentation has been 
applied extensively to medical images in order to assist physician in diagnosing variety 
of diseases, such as bone diseases, to survey the existence and exact location of 
fracture or other bone injuries. 

 
X-ray images include two major regions, which are tissue (high/low density 

tissue) and bone (with density higher than that of tissues). In X-ray images, bone 
appears brighter than tissue; however bone segmentation is still a challenging task due 
to complexity of X-ray images, that is mainly caused by existence of noise and 
artifacts in these types of images and most importantly closeness of grayscale levels of 
some tissues and bones (lack of the contrast between regions) (Mahendran and Baboo 
2011). Overlapping of the tissue and bone regions in this type of images is another 
problem to be considered. Due to these mentioned difficulties, most of the 
segmentation methods are unable to segment the bones with desired accuracy. Hence, 
the fundamental objective of this research is to detect/segment the bones over X-ray 
images as complete and accurate as possible. For this purpose, the weaknesses of 
three well-known methods are analyzed and an improvement method is proposed to 
get better segmentation results in cases of lack of contrast or overlapping between 
bones and tissue regions. 

 
    There are several segmentation methods applied on X-ray images for the 

purpose of segmenting the bones with higher accuracy, however, because of the visual 
complexity in different bone structures, there is no single method which can be used 
successfully for the whole body segmentation. That is the reason why researchers 
attempted to combine different methods or improve existing ones, using 
mathematical or experience based approaches, for the purpose of getting a good 
segmentation result. K-means, fuzzy c-means and spatial fuzzy c-means algorithms 
are well-known clustering methods applied successfully to a variety of applications. 
Considering the X-ray image segmentation problem, they have significant weaknesses 
in segmenting regions with boundary insufficiencies (i.e., missing edges), lack of 
texture contrast between regions of interest (bones) and background (background and 
soft tissues), and presence of noise.  
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The main reason behind the weakness of the above mentioned methods for 
these problematic cases is their holistic approach in clustering the image pixels. The 
proposed entropy-driven improvements in clustering and statistical rule-based 
refinement methods advance the capability of their integrated algorithm to get 
significantly better results in dealing with missing edges, overlapped regions, low 
contrast and noisy X-ray images. 

 
    Considering the state of the art in employing K-means, fuzzy c-means and 

spatial fuzzy c-means algorithms for X-ray image segmentation, the following research 
works are found particularly useful on pioneering the ideas for the proposed 
improvement method. In this respect, Ng (2003) modified the K-means algorithm by 
changing the distance equation for the purpose of texture segmentation. Instead of 
using Euclidian distance measure, the author added an additional spatial proximity 
measure to the feature space distance. This modified distance measure is defined as,  
 

(푋 ,푋 ) = (1-λ) |푋 (푘) −  푋 (푘)| +λ (|푥 − 푥  |  +  |푦 − 푦  | ), 0 ≤ λ < 1 

 
Where (x ;y ) and (x ;y ) are pixel coordinates on the image that are 

normalized with regard to the image dimensions. The first term in the above equation 
is for measuring the degree of dissimilarity between two pixels (feature vectors) in 
Manhattan distance. The second term is for measuring the spatial separation between 
the locations of the two pixels by computing the distance using geometric space, 
where the parameter λ is used to adjust the relative emphasis between the two 
distances measures. Based on this research, improvements in both segmentation 
quality and speed of K-means method are achieved for some average and high 
contrast texture images; however, results of using this approach with low contrast 
images like X-rays is not mentioned in this paper. 

 
Sarmila and Sujatha(2012), proposed a hybrid segmentation method for 

malignancy detection using FCM and active contour model. They improved the 
segmentation speed considerably by this proposed combination; however, evaluation 
of this method in terms of segmentation accuracy is not given. Based on the 
published experimental results, the presented hybrid method seems to be insufficient 
to improve the segmentation quality in terms of extracting the objects from their 
background. 
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Venkateswaran, and Muthukumar (2010) improved generalized spatial fuzzy c-
means (GSFCM) by applying a genetic algorithm and they named this approach as 
GAGSFCM method. Based on their research using MR images, they succeeded to get 
higher accuracy than FCM and GSFCM algorithms. However, computational 
complexity of this method is too high compared to those of the FCM and GSFCM 
algorithms.  

 
Shamsi and Seyedarabi (2012) modified the spatial fuzzy c-means algorithm 

for clustering MR images by giving a weight to each pixel (each point of dataset) in 
relation to every cluster. Therefore, they managed to make this method robust under 
noisy environments. Consequently, the resulting algorithm had better segmentation 
results compared to FCM and SFCM; however, the differences are not remarkable 
especially in cases of images with less noise. 

 
    The rest of this paper is organized as follows: Section 2 includes a review of 

the relevant literature on three well-known automatic segmentation methods, namely 
K-means, fuzzy c-means, and spatial fuzzy c-means algorithms. Section 3 illustrates a 
detailed explanation of the proposed improvement approaches for segmentation and 
pixel-wise refinements.  Section 4 shows the experimental evaluations over several X-
ray images selected to illustrate the achieved improvements both visually and 
computationally using well-known image quality assessment measures.  Finally, 
conclusions and future work plans are discussed in Section 5. 

 
2. Automatic Methods for Image Segmentation 

 
Image segmentation algorithms can be grouped in three categories as follows: 

manual, semi-automatic and fully automatic. The three well-known automatic 
segmentation methods which are the target of this research are discussed in the 
following subsections.  

 
2.1. K-means algorithm: 

 
This method is one of the simplest, easiest, and widely used unsupervised 

techniques that are employed for solving the clustering problems. The main process 
of this algorithm starts by setting out ‘K’ (the number of clusters) by a user-defined or 
an automatic method.  
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Then, the process continues by defining the cancroids of clusters randomly, 
one for each cluster. The next step is to find the pixel-centroid distances for each 
pixel and consequently assigning them to the nearest cluster until no unflustered 
pixels remain. After this initialization step, centroid of each cluster is recalculated to 
update the positions of cluster centers, which is then followed by assigning each pixel 
to the new closest cluster (new centroid). This procedure is repeated until no changes 
occur in cluster centers (Mohd, Beg, Herawan, Noraziah, and Rabbi 2011). 
 
2.2. Fuzzy c-means algorithm: 

 
Similar to K-means method, this is an unsupervised technique that has been 

successfully applied to solve clustering problems. It works based on grouping of 
similar points/pixels into same clusters. It attempts to iteratively minimize a cost 
function which is the distance of pixels to the cluster centers in the feature domain. 

 
Unlike K-means method, this method allows assignment of one point/pixel to 

more than one clusters in which the measure of belonging to a particular cluster is 
called the membership value. This degree is calculated based on similarity between 
any point and the cluster centers. It means that membership value will be higher if 
pixel and the cluster center is more similar and vice versa (Sarmila, et al. 2012). 

 
2.3. Spatial fuzzy c-means algorithm:  

 
In general, image pixels in immediate neighborhoods most probably have 

either the same or close grayscale levels. In this case, these pixels will belong to the 
same cluster with a high probability that may cause uncertainty in determining the 
exact object boundaries. Spatial fuzzy c-means algorithm handles this problem 
through using the spatial relationships among neighbor pixels. The algorithmic 
description of the spatial fuzzy c-means algorithm is exactly the same as that of fuzzy 
c-means algorithm except the following modification: The membership values are 
altered after computing the spatial function, hij, within the neighborhood of each 
pixel, Xj, as follows: 
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h = u
∊  ( )

 

 
Where NB (X ) represents a square window centered on pixel (X ) in the 

spatial domain. Just like the membership values uij, the spatial function value (h ) 
represents the probability that pixel (X ) belongs to i cluster. Finally, the spatial 
function is used to update the membership function values as given below: 

 

ú =
u  h

u h
  

 
where u and ú  are the current and updated membership values, p and q are 

parameters to control the relative importance of both functions (spatial function and 
membership function)(Chuang, Tzeng, Chen,  Wu, Chen 2006 ,  and Jaffar, Ahmed, 
Naveed,  Hussain, and Mirza 2009). 

 
3. The Proposed Method: Entropy Guided Cellular Automata Rule Engine for 
Tissue/Bone Clustering 

 
The three automatic segmentation methods explained above exhibit 

insufficient performance in segmenting the bones in X-ray images correctly when they 
are used with low contrast images, noisy images, and when bones and tissues have 
overlapping in terms of grayscale levels. Consequently, they may misclassify part of 
bones as tissue and vice versa. In this research, to deal well with these problematic 
issues, an entropy-guided improvement for clustering and a statistical rule-based 
refinement for pixel clusters are proposed for the purpose of better differentiation of 
tissues and bones. As it is illustrated in Figure 1, the proposed method contains three 
phases as follow: 

 
1. Segmenting a given X-ray image using only one of the three automatic 

segmentation methods improved by the entropy rule. 
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2. Passing both the segmented and the original images to the statistical rule engine to 
find out whether the tissue-labeled pixels really belong to the tissues or should be 
assigned to the bone cluster. 

3. Merging the results of “Segmentation” and “statistical rule engine” phases to get 
the final output. 

 
These three phases are presented in detail in the following subsections: 
 

 
 

Fig. 1: The three phases of the proposed method 
 

3.1. Automatic segmentation of X-ray images: Entropy-driven improvement for 
clustering algorithms 

 
As explained above, the first phase of the proposed approach is the automatic 

segmentation of the input X-ray image using one of the improved entropy driven K-
means, fuzzy c-means, or spatial fuzzy c-means algorithms. Application details of 
these algorithms are as follows: These improved clustering algorithms (i.e. in phase 
one) have two important characteristics. First of all, they do not need to specify any 
user-defined value as the number of clusters. Secondly, they have ability of eliminating 
clusters belonging to soft tissues and keeping only the clusters that most probably 
belonging to bones.   
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An algorithmic description of the entropy-guided improvements applied on 
the three well-known clustering algorithms is given below. A flowchart illustration is 
also provided in Figure 2 to better describe the flow of data throughout the 
computational steps.  

 
1. Take the original image as input and find the number of clusters using the 

histogram method (Kanthan and Sujatha 2013).Number of peaks in the image 
histogram approximately shows the number of clusters in the image. Since the 
output of histogram method often indicates more clusters than the really present, 
some of the clusters should be removed or merged with the others to reduce the 
number of clusters to its actual value.  

2. Cluster the input X-ray image with one of the clustering algorithms using the 
number of clusters found in step 1. 

3. Sort the clusters based on their grayscale levels in ascending order. For example, 
cluster with grayscale values between 0 and 10 is labeled as the first cluster (i.e. 
indexed as J=1). Similarly, cluster with grayscale values close to 255 is set as the 
last cluster (i.e. indexed as J=K).  

4. Set J=1 (Ignore the first low grayscale cluster which surely contains the 
background and tissue pixels). We have taken the advantage of the fact that 
tissues have low grayscale values compared to bones, hence the probability that 
the pixels in the first cluster belong to the background or soft tissues is very high. 

5. Remove/Eliminate the first J clusters that belong to the background or soft 
tissues (if they are not removed before) simply by changing their grayscale pixel 
values to zero, and afterwards assume that the remaining clusters (with none zero 
pixel values) represent a single segment (bones). 

6. Calculate entropy for both the original image and the segmented image obtained 
from step 5. 

7. If entropy of the original image is less than α times the entropy of the segmented 
image (It means we need to remove more clusters with low grayscale values to 
reach better segmentation result) then set J=J+1 and go back to step 5, otherwise 
go to step 8 (for bone segmentation over x-ray images, ‘α’ is set to a fix number 
equal to 3.0). 

8. Save the remaining clusters as output of the improved entropy-guided clustering 
algorithm.  
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Figure 2: Flowchart description of the improved entropy-guided clustering 
algorithms. 

 
In order to demonstrate the effect of factor α on the performance of the 

underlying clustering algorithms, we took the K-means algorithm into consideration 
and clustering outputs with two different values of this parameter are generated. 
Remembering that our fundamental objective is to cluster pixels that most probably 
belong to the bones, we want to keep only the pixels that certainly belong to the 
bonesto build the desired segmentation output. Rest of the pixels will be eliminated 
(by changing the corresponding pixel values to zero).  

 
As described above, this is achieved using the entropy information over the 

original and the clustered images. If the entropy over the original image is less than “α 
times” entropy of the segmented image, then pixels corresponding to bone segment 
are not completely identified yet, hence we need to remove more clusters from the 
segmented image, otherwise all pixels within the bone segment are extracted and the 
procedure can be terminated.  



48                        Journal of Computer Science and Information Technology, Vol. 4(1), June 2016 
 
 

 

For instance, Figure 3 illustrates the segmentation results using the improved 
K-means algorithm proposed in this research with two different entropy factors, α. 
When α is set equal to 3 (number of main entities, background, tissue, and bone), 
tissue labeled pixels are better differentiated from the ones identified as bone. 
However, by setting α=2, the improved K-means method works as a binary 
segmentation method (i.e. there are only two clusters, background and object). 

 

 
  a       b     c  

 
Fig. 3: Improved K-means algorithm: effect of factor α on the performance of 

algorithm. a: original image, b:clustered image using α=3, c:clustered image using 
α=2. 

 
3.2. Statistical rule engine for tissue/bone refinement 

 
The fundamental objective of the statistical rule engine for tissue/bone 

refinement is to find out if the tissue-labeled pixels resulting from one of the three 
improved clustering algorithms (mentioned above) are really belonging to tissues or 
should be assigned to bone segment.  

 
This engine is based on statistical analysis of pixels within a square window 

(mask) to further refine the labels of tissue and background clustered pixels. That is, 
the statistical rule engine processes only the pixels which are already labeled as tissue 
or background. The reason why rule engine should only be applied on pixels with the 
label of tissue or background is that, in the phase one of our proposed method, we 
have already found the pixels that certainly belong to the bone.  

 
Therefore, there is no need to further investigate the possibility of their 

membership to the bone segment. The statistical rule engine works pixel-wise as 
follows: for every tissue- or background-labeled pixel on the segmented image, 
calculate the mean and standard deviation of the pixels within a predefined square 
mask in the original image. 
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 If the grayscale level of the pixel under consideration, (i.e. pixel in center of 
mask) is greater than mask’s mean plus γ times the mask’s standard deviation. Then 
this pixel certainly belongs to the bone (should be assigned to the bone segment), 
otherwise it belongs to soft tissue or background. Parameter γ is set to 2.0 based on 
the Gaussian distribution. The fundamental algorithmic steps of phase 2 are given 
below: 

 
1. Set the mask/window size=β× β(β is a fix number for all images, e.g. for this 

paper it is been set equal to 15) for both original and segmented images, and set 
the masks’ centers on the first (top-left) pixel of images. 

2. Move the masks one pixel ahead on both images.    
3. If the pixel value of mask center in the segmented image is equal to zero then 

calculate mean and standard deviation of pixels under the mask in original image, 
otherwise go back to step 2. 

4. If pixel value of mask center in the original image is greater than T=mean + γ*std, 
then change the center pixel value in the segmented image from zero to one, 
otherwise without changing the pixel value go to step 5. 

5. If all pixels in the segmented image are considered as mask centers and processed 
as above, then go to step 6, otherwise go to step 2.  

6. Remove the salt (noise) present on the segmented image using Otsu’s threes 
holding method (Otsu 1979) (if the grayscale value of the segmented image is 
smaller than Otsu’s threes holding of original image, change the pixel value in 
segmented image to zero) 

7. Find and keep only the largest segment in the image resulting from step 6 (by 
finding connected components and selecting the largest component/segment). 

8. Add the output of this process (step 7) as an input to the merging step of the 
proposed method (see Figure 1 and 4). 
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Figure 4: Flowchart description of the statistical rule engine. 
 
To illustrate how the statistical rule engine works, an example using a 5×5 

mask is presented in Figure 5 where the center pixel has bright color on the original 
image (Figure 5.a). This pixel is classified as tissue in the segmented image (Figure 
5.b).  
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Hence, to further refine the cluster of this pixel, for being sure about its 
assigned label, the mean and standard deviation under the mask in original image are 
calculated and if the pixel value of the original image at this location is greater than 
T=mean + 2* standard_deviation, this pixel will be assigned to bone segment.  

 
Figure 5-c shows that the statistical rule engine assigns the center pixel to the 

bone segment by changing its color from black (zero) to white (one).  
 

 
 a  b          c 
 
Fig. 5: a: mask over the original image,  b: mask over the segmented image,  c: 

output of the statistical rule engine. 
 
As a matter of fact, the proposed statistical rule engine for refining pixel 

clusters usually creates a lot of salt noises and outliers as shown in Figure 6.c. Then, 
we need to filter out the noise and, for this purpose; we used the Otsu’s thresholding 
method. Figure 6.d presents the result of this noise removal procedure. Furthermore, 
as a result of operations performed so far within the framework of the proposed 
approach, bones constitute the largest segments that further helps us to decide which 
segments to keep as bones and which are to be removed totally.  

 
Figure 6.e demonstrates the idea behind keeping the largest segment as bones 

while removing the ones which originate from the clones of tissue pixels to bone 
pixels. The final step of the proposed method includes the merging of the two 
outputs originating from the improved K-means algorithm and the statistical rule 
engine refinement proposed above. Output of this merging step is presented in figure 
6.f. The merging operator is a simple pixel wise ‘or’ operator. Accordingly, if one of 
the two outputs identifies a pixel as bone, it belongs to bone segment, otherwise it is 
classified as tissue or background. 
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a b  c d e f 

Fig. 6: X-ray image of foot.  a: original image, b: segmented image using 
improved K-means, c: output image of the statistical rule refinement before 
denoising, d: output image after salt removing, e: output image after removing all 
segment except the largest one, f: merging the Fig. 6.b and Fig. 6.e as a final 
segmentation output 

 
Starting from an original X-ray image, Figure 7is another illustration of the 

outputs of all steps of the proposed methods. Output of the improved K-means 
algorithm is shown in Figure 7.b. It can easily be seen that parts of finger bones are 
segmented as tissue/background. The proposed statistical refinement rule engine 
followed the Otsu’s denoising and the largest segment methods and generated the 
image in Figure 7.c. This image is better than the one in Figure 7.b in terms of 
separating bones from tissues, however when applied alone, it may misclassify some 
bones as tissue. After merging the outputs of improved K-means and statistical rule 
engine, simply by an ‘or’ operation, precise segmentation of bones is obtained in 
Figure 7.d. Comparing Figure 7.b and Figure 7.d clearly indicates the improvement 
obtained by proposed methods.  

 

 
 a  b           c  d 
 
Fig. 7: X-ray image of hand. a: original image, b: segmented image using 

improved K-means, c: output of statistical rule engine followed by a denoising and 
largest segment method, d: final output of proposed method obtained from merging b 
and c. 
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4. Experimental Evaluation 
 
In this research work, MATLAB R2013b platform is used for implementing 

the proposed methods. X-ray images used in experimental work are collected from 
different web sites (www.commons.wikimedia.organd www.fineartamerica.com).The 
selection of these images is carried out carefully to exhibit the capabilities of the 
proposed methods under different conditions such as low contrast and/ or grayscale 
overlapping between bones and tissues. Basically, the X-ray images used in this 
research belongs to the following body parts: pelvic (hip bone, sacrum, and coccyx), 
hand (carpals, metacarpals, and phalanges), arm (ulna, radius, and humerus) and foot 
(femur, tibia, and fibula). 

 
There are three algorithmic parameters to be considered in experimental work, 

namely entropy-related factor α used in improved K-means, Fuzzy and Spatial fuzzy 
c-means algorithms, mask size β, and γ used in statistical rule engine. For all 
algorithms and trials, entropy-related factor α is set to a fixed value equal to 3.0 for X-
ray images and 2.0 for binary images. Mask size β and statistical rule engine parameter 
γ are set to fixed values 15 and 2, respectively, for all images and algorithms. It can 
easily be seen that only the parameter α needs to be tuned by the user depending on 
the image type under consideration.  

 
To compare the performance of the proposed methods with the 

performances of the three underlying automatic image segmentation methods, namely 
the K-means, fuzzy c-means, and the spatial fuzzy c-means algorithms, nine well-
known quality assessment measures are taken into account. These assessment 
measures are namely, Accuracy, F-measure, PSNR, Jaccard index, Structural content, 
Normalized cross-correlation, Average difference, Normalized absolute error, and 
Kolmogorov-Smirnov test [Jaccard 1912,Massey 1951,and Varnan, Jagan, Kaur, Jyoti 
and Rao 2011].Each of these assessment measures and their interpretation in terms of 
segmentation quality are briefly described below in Table 1. Abbreviations used in 
tables below are as follows: ACC = Accuracy, FM = F-measure, JI = Jaccard Index, 
SC=Structural Content, NCC =Normalized Cross Correlation, AD = Average 
Difference, KS = Kolmogorov Smirnov, NAE = Normalized Absolute Error, KM = 
K-means, KMN= Improved K-means, FCM = Fuzzy c-means, FCMN= Improved 
Fuzzy c-means, SFCM = Spatial fuzzy c-means, SFCMN= Improved Spatial fuzzy c-
means, and Imp % = Percent  improvement. 
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Table 1: Methods for quality assessment used in this research 
 

Assesm. 
Method 

  Definition Interpretation 

 
 

ACC 

Accuracy is used to find the percentage of correctly 
detected pixels (both true positive and true negative) 
to all pixels of input image. That is, 
ACC=(TP+TN)/N, where TP is the true positive, 
TN is the true negative and N is the number of 
pixels in the given image. 

The higher the accuracy 
better is the quality of 
segmentation. 

 
 

FM 

F-measure is an indication of a test's accuracy.  It is 
defined based on two measurements called precision 
and recall. Precision is the number of correct results 
divided by the number of all returned results, 
whereas recall is the number of correct results 
divided by the number of results that should have 
been returned. Accordingly, F-measure is defined as,    
F=2*( precision*recall)/(precision+ recall) 

 
F-measure score reaches 
its best value at 1 and 
worst score at 0. 

 
PSNR 

This is the peak signal-to-noise ratio (PSNR) 
between ground truth and  
segmentation result, and defined as 
PSNR  =10*log10((255^2)/MS  ), MS = 

∑ (푔 − 푠) /푁where,g is ground truth,  s 

is segmented image and N is total number of pixels. 

In PSNR, greater values 
indicate greater image 
similarity. 

 
 
 

JI 

Jaccard index computes the percentage of all 
correctly detected bone pixels to the number of 
pixels in the image without the pixels that are 
correctly detected as background and tissue. 
Considering that A is the ground truth and B is the 
segmented image, this quality measure is defined as,    
J=M11/ (M01+M10+M11) , where 
M11 = number of pixels where A and B both have a 
value of 1, 
M01 = number of pixels where the pixel of A is 0 
and the pixel of B is 1, 
M10 = number of pixels where the pixel of A is 1 
and the pixel of B is 0. 

Jaccard index is a 
similarity measurement 
method increasing values 
of which indicate better 
quality in the 
segmentation result. 
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Table 1 continues. Methods for quality assessment used in this research 
 

Assesm. 
Method 

  Definition Interpretation  

 
 

SC 

It is a correlation based measure that is used to measure the 
similarity between two images (ground truth and segmented 
image), that is defined as     

SC= ∑ s / ∑ g  

where,  g is ground truth and  s  is the segmented image. 

Higher scores of structural 
content mean more 
similarity between ground 
truth and the segmented 
image. 

 
 

NCC 

Normalized cross-correlation (NK) measures the similarity 
between ground truth and the segmented image.  

NK= ∑ g ∗ s  / ∑ g  

where,g is ground truth and  s  is segmented image. 

A higher value of NK 
means better segmentation 
quality. The range of this 
measure is [-1, 1] and, a 
score of 1 means complete 
similarity between two 
images. 

 
 

AD 

It is a dissimilarity measure based of the average of 
difference between the ground truth and segmented image. 

AD= ∑ g − s  /N where g is ground truth and s is 

the segmented image and N is total number of pixels. 

Lower values of this 
assessment measure means 
higher similarity between 
ground truth and the 
segmented image. 

 
 

NAE 

This assessment measure is based on the calculation of 
dissimilarity between ground truth and the segmented 
image. It is simply the average of absolute differences 
between pixels of ground truth and the segmented 

image:NAE= ∑ |g − s|/ ∑ g 

where,g is ground truth and s is the segmented image. 

 
Lower scores of NAE mean 
better segmentation quality. 

 
 

KS 

The Kolmogorov–Smirnov test score is a measure of 
distance between the distribution function of the 
segmented image and the distribution function of the 
ground truth. 

Lower values of 
Kolmogorov-Smirnov test 
score means higher 
similarity of two images. 

 
The following figures are presented to demonstrate the success of the 

proposed approach under various well-known image quality measures.  Each image is 
also provided with a ground truth that is prepared manually from the original image, 
to be used in computation of some assessment scores. Comparison with the well-
known algorithms with respect to each assessment score are also provided under each 
figure.   
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Additionally, the improved versions of well-known algorithms, implemented 
through using of the proposed entropy guided clustering and statistical rule engine are 
named by appending letter ‘N’ to their short names, e.g. KM and KMN that represent 
the K-means and its improved implementation, respectively. 

 
Figure 8 is an X-ray image of pelvic including hip bone, sacrum, coccyx and 

parts of femur and backbone (lumbar lordosis). This image is significant to exhibit the 
segmentation of a complex bone structure consisting of several joints, different 
thicknesses, and overlapping pixel values within tissue and bone regions. In this 
figure, segmentation results of three well-known methods and their improved 
implementations are put side-by-side to make the visual and computational 
comparisons easier.  Table 2 illustrates the scores achieved with respect to nine 
assessment measures.  

 
For all the three automatic segmentation algorithms, their corresponding 

improved implementations performed significantly better. The improvements 
achieved for the KM and SFCM methods are around 20% for most of the assessment 
scores, whereas for the FCM algorithm the proposed improvement and refinement 
methods achieved around 10% improvements in segmentation quality for most of the 
quality measures. By visual inspection, we can say that the proposed methods are 
quite powerful in identifying the boundaries of bone segments; however, some parts 
of bones having very similar pixel values to tissues are classified as belonging to 
tissue/background segment.  This fact is particularly seen on the flat ends of the hip 
bone and femur.  

  

 
 a  c      e  g 

 
  b  d  f  h 
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Fig. 8: X-ray image of pelvic (hip bone, sacrum, and coccyx), parts of femur 
and backbone (lumbar lordosis) a: original image, b: ground truth, c: KM 
segmentation, d: KMN segmentation, e: FCM segmentation, f: FCMN segmentation, 
g: SFCM segmentation, h: SFCMN segmentation. 
 
Table 2: Segmentation quality assessment scores of KM, KMN, FCM, FCMN, 

SFCM, SFCMN methods for Figure 8. 
 

 
Figure 9 is another X-ray image of pelvic. This image includes large part of hip 

bone, and small parts of femur and backbone (lumbar lordosis). Difficulties associated 
with the segmentation of this image are due to huge overlapping between pixel values 
of tissues and bone regions. Considering the nine quality assessment methods, Table 
3illustrates the segmentation quality scores achieved by all algorithms in the 
experimental suit. Again, for all the three automatic segmentation algorithms, their 
corresponding improved implementations performed better. 

 
The improvements achieved for the KM and SFCM methods are 

approximately10% for most of the assessment scores, whereas for the FCM algorithm 
the proposed methods achieved around 5% improvements. Visual inspection of the 
segmentation results also exhibits that segmentations associated with the improved 
versions of algorithms are better in detecting boundaries and complete shapes of 
bones. However still there are some parts of bones with very close pixel values to 
those of tissues. Therefore, these parts are classified wrongly as tissue/background 
segment, especially on the flat ends of the hip bone and part of a backbone which 
called lumbar lordosis. 

 

Method Alg. KM KMN Imp.% FCM FCMN Imp.% SFCM SFCMN Imp.% 
ACC 0.751 0.801 6.631 0.801 0.810 1.161 0.810 0.855 5.505 
FM 0.594 0.702 18.29 0.702 0.723 2.934 0.723 0.809 11.97 

PSNR 30.18 31.24 3.522 31.24 31.54 0.948 31.54 33.345 5.722 
JI 0.422 0.541 28.19 0.541 0.566 4.602 0.566 0.680 20.09 
SC 0.482 0.571 18.30 0.571 0.609 6.641 0.609 0.718 18.04 

NCC 0.473 0.555 17.52 0.555 0.587 5.599 0.587 0.674 14.95 
AD 29.61 23.73 19.85 23.73 21.92 7.632 21.92 15.42 29.65 

NAE 0.542 0.444 18.22 0.444 0.419 5.614 0.419 0.332 20.64 
KS 0.240 0.184 23.48 0.184 0.168 8.651 0.168 0.091 45.92 
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Fig. 9: X-ray image of pelvic. a: original image, b: ground truth, c: KM 

segmentation, d: KMN segmentation, e: FCM segmentation, f: FCMN segmentation, 
g: SFCM segmentation, h: SFCMN segmentation. 

 
Table 3: Segmentation quality assessment scores of KM, KMN, FCM, FCMN, 

SFCM, SFCMN methods for Figure 9. 
 

Method Alg. KM KMN Imp.% FCM FCMN Imp.% SFCM SFCMN Imp.% 
ACC 0.694 0.736 6.037 0.772 0.805 4.286 0.797 0.830 4.153 
FM 0.587 0.670 14.21 0.724 0.778 7.501 0.767 0.816 6.296 

PSNR 29.22 30.02 2.729 29.58 29.82 0.827 31.33 32.39 3.399 
JI 0.415 0.504 21.39 0.567 0.607 6.998 0.622 0.689 10.62 
SC 0.475 0.546 15.00 0.515 0.535 3.903 0.655 0.706 7.818 

NCC 0.473 0.534 12.76 0.512 0.531 3.653 0.635 0.678 6.806 
AD 48.36 41.40 14.39 44.51 42.39 4.773 31.03 25.77 16.95 

NAE 0.547 0.483 11.75 0.506 0.484 4.409 0.375 0.327 12.87 
KS 0.305 0.244 19.87 0.279 0.263 5.874 0.173 0.124 28.10 

 
The X-ray image of pelvic (hip bone, sacrum, and coccyx), femur and very 

small part of backbone (lumbar lordosis) is illustrated in Figure 10. This image is 
particularly interesting due to the complete embedding of bones within the whole 
body tissue. Low contrast and overlapping of regions between issues and bones 
makes segmentation of this image very difficult. Similarly to the previous two figures, 
the segmentation results of the three segmentation methods and their improved 
implementations are represented below. Significant improvements in segmentation 
quality are both visually and computationally observable.  
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As seen in Table 4, improvements achieved in the three algorithms are very 
similar except the KS assessment score. While KMN algorithm is 25% better with 
respect to KM, FCMN exhibit the same score with FCM. This is the only X-ray image 
for which SFCMN is worse than SFCM with respect to the KS assessment score.  

 

 
 a  c     e   g 
 

 
 b d       f  h 
 
Fig. 10: X-ray image of pelvic (hip bone, sacrum, and coccyx), femur and part 

of backbone (lumbar lordosis).a: original image, b: ground truth, c: KM segmentation, 
d: KMN segmentation, e: FCM segmentation, f: FCMN segmentation, g: SFCM 
segmentation, h: SFCMN segmentation. 

 
Table 4: Segmentation quality assessment scores of KM, KMN, FCM, FCMN, 

SFCM, SFCMN methods for Figure 10. 
 

Method Alg. KM KMN Imp.% FCM FCMN Imp.% SFCM SFCMN Imp.% 
ACC 0.883 0.899 1.813 0.900 0.911 1.210 0.915 0.925 1.071 
FM 0.776 0.812 4.690 0.821 0.839 2.119 0.856 0.876 2.383 

PSNR 34.51 35.37 2.473 35.99 36.62 1.753 37.96 39.83 4.905 
JI 0.634 0.684 7.915 0.697 0.722 3.646 0.748 0.780 4.236 
SC 0.865 0.902 4.278 0.969 0.988 2.044 1.046 1.089 4.112 

NCC 0.769 0.806 4.800 0.847 0.865 2.209 0.904 0.935 3.452 
AD 14.39 11.96 16.85 9.881 8.613 12.83 6.214 4.119 33.70 

NAE 0.362 0.317 12.45 0.306 0.284 7.288 0.262 0.237 9.729 
KS 0.063 0.047 25.56 0.036 0.036 0 0.032 0.035 -9.52 

 



60                        Journal of Computer Science and Information Technology, Vol. 4(1), June 2016 
 
 

 

To illustrate and compare the success of algorithms for thin and multiply 
joined bone structures, Figure 11 shows an X-ray image of hand including carpals, 
metacarpals, and phalanges. There are overlapping regions between tissues and bones 
in regions around the metacarpals, phalanges and regions between ulna and radius 
which are connected to the end of carpals.  

 
Table 5includes scores computed over the nine assessment measures. 

Surprisingly we get the same results for both K-means and fuzzy c-means algorithms 
and consequently, the same degree of improvement in their improved versions. Here 
again the improved methods performed significantly better than their original ones. 
For instance, the KM and FCM algorithms are identically improved in a diverse range 
of approximately from 5%to62%, whereas SFCM is improved in a range from10% to 
80% for the different quality measures. Based on the achieved results for this image, it 
is crystal clear that proposed method out performed its conventional counterparts by 
detecting almost all details of the thin bones and joints.  

 

 
 a   c           e   g 
 

 
 b  d          f                 h 
 
Fig. 11: X-ray image of hand includes: carpals, metacarpals, and phalanges. a: 

original image, b: ground truth, c: KM segmentation, d: KMN segmentation, e: FCM 
segmentation, f: FCMN segmentation, g: SFCM segmentation, h: SFCMN 
segmentation. 
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Table 5: Segmentation quality assessment scores of KM, KMN, FCM, FCMN, 
SFCM, SFCMN methods for Figure 11. 

 
Method Alg. KM KMN Imp.% FCM FCMN Imp.% SFCM SFCMN Imp.% 

ACC 0.904 0.950 5.032 0.904 0.950 5.032 0.861 0.951 10.47 
FM 0.811 0.911 12.4 0.811 0.911 12.40 0.690 0.911 32.06 

PSNR 34.94 36.79 5.283 34.94 36.79 5.283 32.87 38.62 17.49 
JI 0.681 0.827 21.31 0.681 0.827 21.31 0.527 0.837 58.91 
SC 0.866 0.925 6.823 0.866 0.925 6.823 0.694 0.940 35.51 

NCC 0.821 0.927 12.82 0.821 0.927 12.82 0.668 0.935 40.09 
AD 11.41 4.317 62.18 11.41 4.317 62.18 19.81 4.231 78.64 

NAE 0.273 0.147 46.15 0.273 0.147 46.15 0.418 0.146 65.09 
KS 0.068 0.039 42.39 0.068 0.039 42.39 0.124 0.023 81.88 

 
In figure 12, X-ray image of right hand is shown. In this image there is 

intensive overlapping between tissue and bone regions around the metacarpals and 
more considerably in phalanges in terms of grayscale values. As it shown in Figure 
12.c, .e and .g, all three well-known methods failed to segment the bones in the 
phalanges region. However, the results obtained by the improved versions of these 
methods exhibit highly significant improvements in the bone segmentation. As it is 
shown in Table 6, assessment scores obtained for K-means and fuzzy c-means 
algorithms are around 30%, whereas the modified version of SFCM exhibits 
improvements around 50%. This is another example where the proposed rule-based 
improvement technique showed noticeable success that is significantly better than 
KM, FCM and SFCM algorithms in segmenting the bones. 
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Fig. 12: X-ray image of hand includes: carpals, metacarpals, and phalanges. a: 

original image, b: ground truth, c: KM segmentation, d: KMN segmentation, e: FCM 
segmentation, f: FCMN segmentation, g: SFCM segmentation, h: SFCMN 
segmentation. 

 
Table 6: Segmentation quality assessment scores of KM, KMN, FCM, FCMN, 

SFCM, SFCMN methods for Figure 12. 
 

Method Alg. KM KMN Imp.% FCM FCMN Imp.% SFCM SFCMN Imp.%
ACC 0.868 0.946 8.97 0.866 0.946 9.32 0.844 0.947 12.12 
FM 0.688 0.893 29.88 0.671 0.894 33.16 0.607 0.894 47.37 

PSNR 33.20 36.84 10.97 32.19 37.61 16.84 31.39 37.78 20.35 
JI 0.524 0.807 53.99 0.545 0.808 48.19 0.435 0.808 85.60 
SC 0.662 0.808 21.99 0.667 0.808 21.08 0.574 0.808 40.79 

NCC 0.632 0.765 21.01 0.610 0.768 25.84 0.549 0.771 40.24 
AD 15.73 7.690 51.11 14.81 7.540 49.10 19.40 7.333 62.20 

NAE 0.428 0.219 48.80 0.436 0.210 51.93 0.514 0.208 59.60 
KS 0.112 0.032 71.48 0.126 0.032 74.76 0.139 0.032 77.11 
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Another complicated X-ray image to illustrate the comparative performance 
improvements brought by the proposed method is shown in Figure 13. This image 
covers hand (carpals, metacarpals, and phalanges) and arm (ulna and radius). Its 
complexity is due to the number and different types of bones existing on it and too 
much overlapping between grayscale values of tissues and bones. Table 7 illustrates 
the amount of improvements achieved by each improved version of KM, FCM and 
SFCM algorithms using nine quality measures. The improvements achieved for the 
KM algorithm is around 10%,5% for FCM and 30% for SFCM. Visual inspections of 
the segmented images also demonstrate the clear enhancements obtained by the 
proposed method.  

 

 
  a   c   e g 

 
  b   d  f  h 

 
Fig. 13: X-ray image of hand and arm contains: carpals, metacarpals, and 

phalanges, ulna, and radius. a: original image, b: ground truth, c: KM segmentation, d: 
KMN segmentation, e: FCM segmentation, f: FCMN segmentation, g: SFCM 
segmentation, h: SFCMN segmentation. 
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Table 7: Segmentation quality assessment scores of KM, KMN, FCM, FCMN, 
SFCM, SFCMN methods for Figure 13. 

 
Method Alg. KM KMN Imp.% FCM FCMN Imp.% SFCM SFCMN Imp.% 

ACC 0.877 0.910 3.658 0.893 0.913 2.229 0.840 0.917 9.256 
FM 0.743 0.829 11.60 0.798 0.824 3.308 0.604 0.828 37.24 

PSNR 34.13 36.56 7.14 33.79 34.31 1.535 32.21 35.27 9.52 
JI 0.591 0.708 19.81 0.644 0.721 11.93 0.432 0.707 63.57 
SC 0.830 0.941 13.35 0.788 0.833 5.815 0.585 0.800 36.90 

NCC 0.758 0.847 11.82 0.806 0.840 4.281 0.563 0.779 38.32 
AD 13.86 8.186 40.94 15.71 13.62 13.27 23.39 11.54 50.66 

NAE 0.372 0.281 24.36 0.376 0.354 5.907 0.515 0.266 48.30 
KS 0.075 0.072 3.605 0.076 0.075 1.189 0.146 0.069 53.11 

 
Figure 14 is an X-ray image of arm containing hummers, ulna, and radius. It is 

an image with very high overlapping with the tissue in the ulna, and radius regions and 
some overlapping in the joint area. After applying the proposed method to the three 
well-known methods used in this research, the achieved improvements in segmenting 
bones are shown visually and computationally in Figure 14.d, .f, and .h. The 
corresponding improvements with respect to the listed assessment measures are 
shown in Table 8.  

 

 
 a   c      e  g 
 

 
 b    d          f                h 
 
Fig. 14: X-ray image of arm contains hummers, ulna, and radius. a: original 

image, b: ground truth, c: KM segmentation, d: KMN segmentation, e: FCM 
segmentation, f: FCMN segmentation, g: SFCM segmentation, h: SFCMN 
segmentation. 
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Table 8: Segmentation quality assessment scores of KM, KMN, FCM, FCMN, 
SFCM, SFCMN methods for Figure 14. 

 
Method Alg. KM KMN Imp.% FCM FCMN Imp.% SFCM SFCMN Imp.% 

ACC 0.949 0.960 1.117 0.964 0.966 0.228 0.960 0.973 1.386 
FM 0.812 0.857 5.554 0.876 0.884 0.982 0.861 0.911 5.892 

PSNR 37.01 38.07 2.872 38.74 39.06 0.844 38.35 40.35 5.236 
JI 0.684 0.750 9.729 0.779 0.792 1.760 0.755 0.837 10.82 
SC 0.812 0.855 5.322 0.888 0.898 1.058 0.844 0.913 8.18 

NCC 0.811 0.853 5.168 0.880 0.889 0.966 0.837 0.904 8.030 
AD 5.746 4.464 22.313 3.711 3.438 7.359 4.527 2.725 39.80 

NAE 0.247 0.194 21.484 0.169 0.158 6.106 0.204 0.130 36.45 
KS 0.051 0.039 22.53 0.032 0.029 8.696 0.035 0.020 41.45 

 
5. Conclusion and Future Work 

 
Considering X-ray images and the bone segmentation problem, a novel 

Entropy-driven improvement for clustering and a statistical rule-based refinement are 
presented to improve segmentation quality of three well-known algorithms. To 
evaluate the comparative performance of the proposed improvement methods 
computationally nine well-known image quality assessment methods that measure the 
resulting segmentations from different points of quality measures are used.    

 
    Experimental evaluations based on visual inspections and computational 

results showed that objectives of the proposed improvement method are reached at 
satisfactory levels. Bone segmentation of X-ray images with varying degrees of 
complexity is carried out with better quality scores compared to the achievements of 
the underlying fundamental algorithms. The level of improvements goes up to 80% 
for some severely complex X-ray images. As a future work, it could be very effective 
to use interval type-2 fuzzy sets to ensemble the results earned from different 
integration of the proposed method. This may help to handle uncertainties in medical 
images more efficiently. 
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