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Abstract 
 

 

There are several state-of-art for animating human motion, most of which involves the use of markers on the 
human and a tracker that estimates movement based on the position and orientation of these markers. In this 
paper, we discuss the different methods in which to extract human lip movement from video and map to the 
corresponding viseme of a foreign language for smooth animation of a 3D model. We discuss the use of 
Active shape model for obtaining lip movements, the use of established grapheme to phoneme methods and 
the commonality with the English phonemes, and how these are transferred onto a 3D human model  

 

1. Introduction  
 

Computerized text-to-speech synthesis with visual representation is a multifaceted problem domain requiring 
an understanding of a variety of subjects to arrive at a plausible solution.  First, there is the step of converting the text 
into some form of audio. Basically, you take each word in the sentence and break it down into the basic sounds that 
make it up, called phonemes. Then you string all those phonemes for each word together with all the phonemes for 
the rest of the words in the sentence and you have an audio representation of that sentence. The process is not 
actually that straightforward however, because the English language contains many homographs and heteronyms that 
are problematic for the translator. Homographs are words that are spelled the same but have different meanings. 
These words inject ambiguity into the parsing of a sentence and make it difficult to find out exactly what the part of 
speech of the word is, and different parts of speech can alter the flow of a sentence and affect the meaning of other 
parts of that sentence as well, including their pronunciation, which is exactly what we are trying to produce, based 
solely on textual information. Heteronyms are a problem that further complicates that situation by taking the 
homograph, the word with the same spelling but different meaning, and then adding the fact that it is also 
pronounced differently. Without the existence of heteronyms, we could simply look up each word in a database and 
extract a string of phonemes with a one-to-one mapping. But we cannot do that because heteronyms do exist. 
Because of these heteronyms, we must analyze how that word is used in the sentence to determine which version of 
that heteronym we are dealing with so that we can generate the correct audio to represent it(Bear, Harvey, Theobald, 
& Lan, 2014; Bozkurt, Erdem, Erzin, Erdem, & Ozkan, 2007; Dave & Patel, 2014; Yu, Garrod, & Schyns, 2012). 
 

2. Related work 
 

Processing text to derive phonemes and then taking those phonemes to derive visemes is a defined process, 
and if you are starting with a predefined set of written text that you want to generate, that process suits your problem 
domain just fine. What if you had English source material and you wanted to present it in another language? This is a 
situation that occurs more frequently as the internet continues to shrink the world we live in.  
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If your only concern were text-to-speech synthesis with a visual representation, you would first need to 

translate that English text into text of the target foreign language, say Arabic, and then put that Arabic text through 
the same process that you used for the English text. You would first analyze the text to produce phonemes, and with 
those phonemes you could determine the resultant visemes that are necessary to display that performance visually.  

 

Another problem facing text-to-speech synthesizers is that of stringing words together in a sentence. A single 
word by itself could be pronounced one way, but when there is another word trailing it in that sentence, the 
phonemes that exist on the boundary between those words could be altered, or one of them could possibly be 
completely erased because they are both merging together to form one single phoneme. Once you solve these 
problems however, you have some speech. It may not be a perfectly natural and human-sounding representation of 
that text, but it should be close enough to be intelligible. The other half of that two-sided coin is the visual 
representation of the speech. 

 

Once the text has been broken down into its individual phonemes, each phoneme is mapped to a visual 
depiction of the mouth as it is producing that sound, called a viseme. Human beings have an infinite number of 
producible phonemes and visemes, but in practice, like how analog music is digitized, many similar phonemes that are 
almost indistinguishable from one another can be treated as one logical phoneme, and thus the overall number of 
phonemes that are actively used in each language is effectively constrained. Different languages have different 
numbers of phonemes. For example, English has around 48 phonemes that map to 15 possible visemes while 
Lithuanian has 58 phonemes and 16 visemes (Mažonavičiūtė, I. & Baušys, 2009). Japanese has 24 phonemes(Sawai, 
1991). Arabic has 29 phonemes and 20 visemes(Chelali & Djeradi, 2011). Indonesian has 49 phonemes mapping to 12 
visemes (Setyati et al., 2015). Khwe, a Khoisan tribal clicking language from Africa, has 70 phonemic consonants 
(including 35 clicks), and 25 vowel phonemes(Dixon, 2006). Just as there were complications with phonemes when 
words are strung together, the mapping of phonemes to visemes can be altered when certain phonemes are used in 
sequence. As such, Mattheyses, Latacz, and Verhelst posit that the true mapping of phonemes to visemes is not many-
to-one, but rather many-to-many(2013). 
 

America’s film industry produces films that are presented all around the world to audiences who do not speak 
or understand English. Sometimes it is acceptable to present the movie with the original English audio and display 
subtitles across the bottom of the screen for the audience to read while they are watching the movie so they can 
follow what is going on in the story. That is a relatively easy proposition for the moviemakers; they simply contract 
out the translation to an in-house or outside body, who understands English and the target language, then pay to have 
them watch the movie and transcribe the spoken word into the target subtitles that will be used for the movie. 
Unfortunately for moviemakers, some cultures are less accepting of subtitled movies and they are used to consuming 
their media with dubbed audio in their own language, in fact they demand that their movies be made available to them 
in their native language (Garrido et al., 2015).When a movie is played back with its original audio, all the phonemes 
will match up in time with the visemes on screen, but once you swap out the audio with that of a new language, the 
new phonemes being played back will not synchronize with the original visemes being displayed on the screen.In the 
past, efforts were made to tailor the foreign language script to match up with the picture by choosing words that 
would at least approximate the original language visemes on display. Due to the many-to-one mapping of phonemes 
to visemes, these translating scriptwriters were granted a certain amount of leeway in their choice of wording. 

 

Modern digital technological advances have made it possible to do the opposite. Garrido et. al.(2015)has 
developed a system that records a mapping of mouth shapes to time stamps in the original movie, and then processes 
the foreign language dubbed audio to obtain phonemes and determine the desired visemes that should be displayed at 
certain time stamps within the dubbed movie.Then they can alter the visual depiction of the performance in such a 
way that it will be a closer match to the dubbed audio, without having to alter the speech too much and make it seem 
stilted and unnatural(Garrido et al., 2015).  

 

Another use for these phoneme-viseme mappings is in video games. Usually, a video game is written in one 
language, in such a way that all the text that will be visible in the game is contained in one file, or text database. When 
the publisher of that video game wishes to sell that game in another region, he will send just that file off to the 
localization department, or even a third-party localization service, and they will translate the text and send it back. 
With that translated text database, the game will be able to display the text in the appropriate language for the region 
in which it is being played, based on the language configuration of the host system.  
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Back in the era of 16-bit game consoles like the Sega Genesis/Mega Drive and the Super Nintendo/Super 
Famicon, that was all that was needed. Those systems were not capable of playing high fidelity voice audio, and even 
if they were, the cartridge media that held the games  was far too limited in capacity to contain it, so all the dialogue 
was text-only. The video game systems of today are equipped hard disk drives and CD-ROM drives that can hold vast 
amounts of voice and video data, and the audio and video processors are easily capable of making use of it all. But 
still, many games limit themselves to text-only presentation, because the costs of localizing anything more than that 
would be prohibitive. 

 

Larger companies have the financial resource to localize even their audio and video data, but they are taking a 
big risk. It takes a lot of time and money to accomplish all that localization, and if sales do not perform well in the 
target market, they stand to lose a large sum of money. 
 

However, equipped with an effective text-to-speech system, all that translated text could easily be 
extrapolated to present audio and visual performance to the user as well, with little added cost to the publisher of the 
game. Such systems are frequently referred to as “talking heads” in the scholar community(Mažonavičiūtė, I. & 
Baušys, 2009; Raheem Ali, Sulong, & Kolivand, 2015).That is an apt description of what the head is doing, and for the 
purposes of that research I suppose it is all they are concerned with, but the technology can be applied to much more 
than just a talking head. Every character in a video game is essentially a talking head that also just happens to have a 
body attached to it so it can do other things and make the game more fun, but the talking head is where the language 
normally comes out of a person, so that is the portion of the character we are concerned with when talking about 
speech synthesis and its visual representation.  
 

3. Speech corpus 
 

From Czyzewskiet al. (2017), the Czech audio-visual database UWB-07-ICAVR (Impaired Condition Audio 
Visual speech Recognition) (Trojanová, Hrúz, Campr, & Zelezny, 2008) is focused on extending existing databases by 
introducing variable illumination, similar to VALID. The database consists of recordings of 10000 continuous 
utterances (200 per speaker; 50 shared, 150 unique) taken from 50 speakers (25 male, 25 female). Speakers were 
recorded using two microphones and two cameras (one high-quality camera, one webcam). Six types of illumination 
were used during every recording. The UWB-07-ICAVR database is intended for audio-visual speech recognition 
research. To aid it, the authors supplemented the recorded video files with visual labels, specifying regions of interest 
(a bounding box around mouth and lip area), and they transcribed the pronunciation of sentences into text files. 

 

Audiovisual Polish speech corpus (AGH AV Corpus) (AGH University of Science and Technology 2014) is 
another example of an AVSR database built for Polish language. It is the largest audiovisual corpus of Polish speech 
(Igras M., Ziółko B., 2012; Jadczyk & Zi, 2015) as reported by Czyzewski et al. (2017). The authors of this study 
evaluate the performance of a system built of acoustic and visual features and Dynamic Bayesian Network (DBN) 
models. The acoustic part of the AGH AV corpus is more thoroughly presented and evaluated in the paper by the 
team of the AGH University of Science and Technology(Żelasko, Ziółko, Jadczyk, & Skurzok, 2016). Besides the 
audiovisual corpus, presented in Table 1, authors developed various versions of acoustic corpora featuring the large 
number of unique speakers, which amounts to 166. This results in over 25 hours of recordings, consisting of a variety 
of speech scenarios, including text reading, issuing commands, telephonic speech, phonetically balanced 4.5 hourssub 
corpus recorded in an anechoic chamber, etc. (Czyzewski et al., 2017). 
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Table 1. Comparison of existing databases from Czyzewski et al. (2017) 

 

Database Year Number of 
speakers 

Resolution Fps Language material Additional features 

TULIPS1 1995 12 100×75 30 fps numerals 1–4 no 
DAVID 1996 123 640×480 30 fps numerals, alphabet, nonsense 

utterances 
varying background 

M2VTS 1997 37 286×350 25 fps isolated numerals 0–9 head rotations, glasses, hats 
XM2VTS 1999 295 720×576 25 fps 3 sentences (numerals and words) head rotations, glasses, hats 
CUAVE 2002 30 720×480 29.97 

fps 
isolated or connected numerals 
(7000 utterances total) 

simultaneous speech 

BANCA 2003 52 720×576 25 fps numerals, name, date of birth and 
address 

controlled, degraded and adverse conditions, 
impostor recordings 

AVICAR 2004 84 360×240 29.97 
fps 

Isolated numerals and letters, 
phone numbers, TIMIT 
sentences 

automotive noise, microphone, and camera array 

VALID 2005 106 720×576 25 fps same as XM2VTS varying illumination and noise 
GRID 2005 34 720×576 25 fps 1000 command-like sentences no 
DXM2VTS 2008 295 720×576 25 fps same as XM2VTS varying background, video distortions 
VIDTIMIT 2008 43 512×384 25 fps 10 TIMIT sentences office noise and zoom 

 
UWB-07-iCAV 2008 50 720×576 max 50 

fps 
continuous Czech utterances varying illumination and quality 

IV2 2008 300 780×576 
max 

25 fps 15 French sentences stereo frontal and profile views, iris images, 3D 
scanner data, head pose and illumination 
variations 

WAPUSK20 2010 20 640×480 48 fps 100 GRID sentences stereoscopic camera, office noise 
BL 2011 17 640×480 30 fps 238 French sentences depth camera, highlighted lips 
UNMC-VIER 2011 123 708×640 

max 
29 fps 12 XM2VTS sentences varying quality, speech tempo, expressions, 

illumination, head poses 
MOBIO 2012 152 640×480 16-30 

fps 
32 questions recorded on mobile devices, varying head pose 

and illumination 
AGH AV 
Corpus 

2014 20 1920×1080 25/50 
fps 

Isolated words, numerals Polish language, audio: 16 bit/44.1 kHz, h.264 
video codec 

MODALITY 2015 35 1920×1080 100 fps 168 commands (isolated, 
sentences) 

stereo camera, varying noise, microphone array, 
word SNR, additional depth camera 

 
 

4. Methodology 
 

4.1. Active Shape model 
 

An active shape model (ASM)(Tresadern, Ionita, & Cootes, 2011; van Ginneken, Frangi, Staal, ter Haar 
Romeny, & Viergever, 2002a)consists of a Point Distribution Model (PDM) aiming to learn the variations of valid 
shapes, and a set of flexible models capturing the grey-levels around a set of landmark feature points. Active shape 
models are based on many implicit but crucial assumptions: (i) the shape of the object of interest can be defined by a 
relatively small set of explicit view models, (ii) the grey levels around a landmark point are consistent for all the views 
of the object and can be used to find correspondences between these views and, (iii) the shapes at different views vary 
linearly. These assumptions are valid when the variations allowed are well constrained. 

 

From van Ginneken et al. (2002), an object is described by points, referred to as landmark points. The 
landmark points are (manually) determined in aset of training images. From these collections of landmark points, a 

point distribution model is constructed as follows. The landmark points  𝑥1 , 𝑦1 , …  𝑥𝑛 , 𝑦𝑛 are stacked in 
shapevectors 

 

Χ =   𝑥1 , 𝑦1 , … , 𝑥𝑛 , 𝑦𝑛 
𝑇          (1) 

 

Principal component analysis (PCA) is applied to the shape vectors by computing the mean shape 
 

x =  
1

s
 xi

s
i=1            (2) 

 

the covariance 
 

S =  
1

S−1
  xi − x  s

i=1  xi − x  T          (3) 
 

and the eigen system of the covariance matrix. The eigen vectors corresponding to the t largest eigen values 𝜆𝑖  are 

retained in a Φ =   𝜙1 𝜙2 …𝜙𝑡 . A shape can now be approximated  
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x ≈  x +  Φb           (4) 
 

b is a vector of t elements containing the model parameters, computed by  
 

b =  Φ𝑇 x − x             (5) 
 

when fitting the model to a set of points, the value of b is constrained to lie within the range ±𝑚 𝜆𝑖 , where m has a 

value between two and three. 

 
 

Fig.1. Search using Active Shape Model of a face. 
 

4.2. Grapheme-to-phoneme 
 

From Bisani and Ney (2008), the Automatic grapheme-to-phoneme conversion was first considered in the 
context of text-to-speech (TTS) applications. After normalization (expanding abbreviation, numerals, etc.) the input 
text needs to be converted to a sequence of phonemes which is then used to control a speech synthesizer. The 

simplest technique is dictionary look-up. While eff ective, it has serious limitations: Making a pronunciation dictionary 
of significant size (over 100,000 entries) by hand is tedious and therefore costly. Also, the storage requirements of 
such a database can be problematic for embedded or mobile devices. More importantly, a finite dictionary will always 
have limited coverage, while TTS systems are often expected to handle arbitrary words. 

 

To overcome the limitations of simple dictionary look-up, rule-based conversion systems were developed. 
These can typically be formulated in the framework of finite-state automata(Kaplan & Kay, 1994). Often rule-based 
G2P systems also incorporate a dictionary as an exception list. While rule-based systems provide good (or even 
complete) coverage they have two drawbacks: Firstly, designing the rules is hard and requires specific linguistic skills. 
Secondly, natural languages frequently exhibit irregularities, which need to be captured by exception rules or exception 
lists. The interdependence between rules can be quite complex, so rule designers must cross-check if the outcome of 
applying the rules is correct in all cases. This makes development and maintenance of rule systems very tedious in 
practice. Moreover, a rule-based G2P system is still likely to make mistakes when presented with an exceptional word, 
not considered by the rule designer(Bisani & Ney, 2008). 

 

In contrast to the knowledge-based approach outlined above, the data-driven approach to grapheme-to-
phoneme conversion is based on the idea that given enough examples it should be possible to predict the 
pronunciation of unseen words purely by analogy. The benefit of the data-driven approach is that it trades the 
intellectually challenging task of designing pronunciation rules, for the much simpler one of providing example 
pronunciations. For native speakers, it is much easier to judge the correctness of a pronunciation or to write down the 
pronunciation of a specific word, than to formulate general spelling rules. The crucial question in data-driven G2P is 
how analogy should be implemented algorithmically. Starting with the work of Sejnowski and Rosenberg (1987), 
various machine learning techniques have been applied to this problem in the past. Before we try to give an overview 
in the following, we note that there are two partly competing goals in data-driven G2P, namely lexicon compression 
and generalization. Lexicon compression aims to minimize the storage (and computational) requirements by 
minimizing the error on seen data using a compact model. Generalization aims to overcome the limited coverage of a 
given dictionary by minimizing error on unseen data(Bisani & Ney, 2008). 

 

It is worth noting that the pronunciations used to train a data-driven G2P model ought to exemplify the 
pronunciation rules of the language. This is contrary to the exception list used by rule-based systems which only need 
to cover the atypical pronunciations.  
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Training a model using only words with exceptional pronunciations would clearly defy any analogy-based 

approach. In practice, available pronunciation dictionaries which typically cover the most frequent words of the 
language are often used to train data-driven G2P models. While such dictionaries usually do contain atypical words, 
the patterns found in the more frequent, exemplary words will normally prevail. In fact, the data-driven approach 
mitigates the distinction between rules and exceptions. Ultimately, training data should be representative of the 
application domain (Bisani & Ney, 2008). 

 

Table 2. The grapheme and phoneme inventories of the recognizers from Stuker and Schultz (2004) 
 

Graphemes Phonemes Graphemes Phonemes 

a a u u 
b b f f 
v w h h 
g g c ts 
d d q tscH 
e ye x sch 
¨e yo w schTsch 
 jscH •  Q 
z z y i2 
i i ~  
i$ j  e 
k k  yu 
l l  ya 
m m  b# 
n n  d# 
o o  jscH# 
p p  m# 
r r  n# 
s s  p# 
t t  r# 
   s# 
   sch# 
   tscH# 
   w# 
   z# 

 

4.3. Viseme mapping 
 

In this section, we describe the decision tree-based viseme clustering methods first proposed in (Galanes, 
Unverferth, Arslan, & Talkin, 1998; Rademan & Niesler, 2015), and subsequently expanded to many-to-many 
phoneme-to-viseme mappings in(Mattheyses et al., 2013; Rademan & Niesler, 2015). Both contributions discuss the 
application of regression trees to the grouping of static visemes. Clusters of static visemes are split by querying their 
phonetic context or properties. Since the decision tree algorithms test more than one attribute when attempting to 
split a group of visemes in a leaf node, they can be classified as multivariate CART algorithms(Loh, 2011; Quinlan, 
1993; Rademan & Niesler, 2015; Witten, Frank, & Hall, 2011). 

 

The decision tree described in (Mattheyses et al., 2013) applies all possible phonetic context questions to the 
static visemes grouped in a decision tree’s leaf node. The algorithm then measures how homogeneous the resulting 
child nodes are. We the apply the active shape model for automatic markerless facial tracking, generating the 
parameters that numerically describe the static visemes. 

 

Equation 6 is applied to each phoneme instance pi in a leaf node, where d(pi,pj) is the Mahalanobis distance 
between a point pi and pjand a distribution D and N is the number of phonemes in the node. The smallest value µbest 
and variance σ best are then selected. Equation 7 is then used to determine the subset impurity IZ, in which λ is a 
scaling factor. This procedure is repeated to find the question whose subset best minimizes the impurity of the ASM 
parameters in the child nodes(Rademan & Niesler, 2015). 
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𝜇𝑖 =
 𝑑 𝑝𝑖 ,𝑝𝑗  

𝑁
𝑗=1

𝑁−1
           (6) 

 

𝐼𝑍 = 𝑁 ×  𝜇𝑏𝑒𝑠𝑡 − 𝜆 × 𝜎𝑏𝑒𝑠𝑡           (7) 
 
 

5. Conclusion and Future work 
 

Visemes are also useful in the process of lip-reading. The jwasi et al.,(2008) developed a method for analyzing 
video sequences to determine the location of the lips of the speaker and what visemes are being formed. Because of 
the many-to-one phoneme to viseme mapping relationship, lip-reading systems encounter a new difficulty in that they 
are starting with a viseme and are trying to map it to one of many possible phonemes.  

 

Goldschen (1996), Bear(2014), and Capelletta (2012;2011) have researched which mapping system produces 
the best results, but there will always be some ambiguity due to the nature of the problem. Since different languages 
contain different viseme sets, you could feasibly analyze the visemes that a person produces in a conversation and 
narrow down adequately synthesis realistic animated lip sync of that language. 

 

In this paper, we reviewed the established methods for modeling lip movement in video to isolate viseme for 
foreign languages using active shape model. In establishing the visual tracking method, we reviewed the current body 
of works in terms of the different studies and research work performed using each of these methods for converting  

 

Fig.2. Sample visemes and phoneme morph targets. 
 

grapheme to phoneme. We considered the hybrid methods implemented using several of the established 
methods of animated lip synchronization. 
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