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Abstract 
 

 

In this paper, we introduce the concepts of Linear neurons, and new learning algorithms based on Linear 
neurons, with an explanation of the reasons behind these algorithms. First, we briefly review the Boltzmann 
Machine and the fact that the invariant distributions of the Boltzmann Machine generate Markov chains. We then 
review the θ-transformation and its completeness, i.e. any function can be expanded by θ-transformation. We 
further review ABM (Attrasoft Boltzmann Machine). The invariant distribution of the ABM is a θ-
transformation; therefore, an ABM can simulate any distribution. We then discuss that the ABM algorithm is only 
the first algorithm in a family of new algorithms based on the θ-transformation. We introduce the simplest 
algorithm in this family based on Linear neurons. We also discuss the advantages of this algorithm: accuracy, 
stability, and low time complexity. 
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1. Introduction 
 

Neural networks and deep learning currently provide the best solutions to many supervised learning 
problems.  In 2006, a publication by Hinton, Osindero, and Teh [1] introduced the idea of a “deep” neural network, 
which first trains a simple supervised model; then adds on a new layer on top and trains the parameters for the new 
layer alone. You keep adding layers and training layers in this fashion until you have a deep network. Later, this 
condition of training one layer at a time is removed. 

 

After Hinton‟s initial attempt of training one layer at a time, Deep Neural Networks train all layers together. 
Examples include Tensor Flow [30], Torch [31], and Theano [32].  Google‟s Tensor Flow is an open-source software 
library for dataflow programming across a range of tasks. It is a symbolic math library, and also used for machine 
learning applications such as neural networks.[6] It is used for both research and production at Google. Torch is an 
open source machine learning library and a scientific computing framework. Theano is a numerical computation 
library for Python. The approach using the single training of multiple layers gives advantages to the neural network 
over other learning algorithms. 

 

One question is the existence of a solution for a given problem. This will often be followed by an effective 
solution development, i.e. an algorithm for a solution. This will often be followed by the stability of the algorithm. 
This will often be followed by an efficiency study of solutions. Although these theoretical approaches are not 
necessary for the empirical development of practical algorithms, the theoretical studies do advance the understanding 
of the problems. The theoretical studies will prompt new and better algorithm development of practical problems. 
Along the direction of solution existence, Hornik, Stinchcombe, & White [33] have shown that the multilayer 
feedforward networks with enough hidden layers are universal approximators. Roux & Bengio [34] have shown the 
same, Restricted Boltzmann machines are universal approximators of discrete distributions. 
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Hornik, Stinchcombe, & White [33] establish that the standard multilayer feedforward networks with hidden 

layers using arbitrary squashing functions are capable of approximating any measurable function from one finite 
dimensional space to another to any desired degree of accuracy, provided sufficiently many hidden units are available. 
In this sense, multilayer feed forward networks are a class of universal approximators. Deep Belief Networks (DBN) 
are generative neural network models with many layers of hidden explanatory factors, recently introduced by Hinton, 
Osindero, and Teh, along with a greedy layer-wise unsupervised learning algorithm. The building block of a DBN is a 
probabilistic model called a Restricted Boltzmann machine (RBM), used to represent one layer of the model. 
Restricted Boltzmann machines are interesting because inference is easy in them and because they have been 
successfully used as building blocks for training deeper models. Roux & Bengio [34] proved that adding hidden units 
yield a strictly improved modeling power, and RBMs are universal approximators of discrete distributions.  

 

In our earlier paper [15], we provide yet another proof. The advantage of this proof is that it will lead to 
multiple new learning algorithms. In our approach, Deep Neural Networks implement an expansion and this 
expansion is complete. In this paper, we will present a new algorithm based our earlier paper [15]. In addition to 
neural network algorithms, there are numerous learning algorithms. We select a few such algorithms below. 

 

Principal Component Analysis [16-17] is a statistical procedure that uses an orthogonal transformation to 
convert a set of vectors into a set of values of linearly uncorrelated variables called principal components. The number 
of principal components is less than or equal to the number of original variables. 
 

Sparse coding [18-19] minimizes the objective: 
L sc   =||WH−X|| 22 + λ || H|| 1 
Where, W is a matrix of transformation, H is a matrix of inputs, and X is a matrix of the outputs. λ implements a trade 
of between sparsity and reconstruction.  
Auto encoders [20-25] minimizes the objective: 
L ae =||W σ (WTX) – X || 22 
 

Where σ is some neural network functions.  Note that L sc   looks almost like L ae   once we set H=σ(W T X) . The 
difference is that 1) auto encoders do not encourage sparsity in their general form;  2) an auto encoder uses a model 
for finding the codes, while sparse coding does so by means of optimization. 
 

K-means clustering [26-29] is a method of vector quantization which is popular for cluster analysis in data 
mining. K-means clustering aims to partition n observations into k clusters. Each observation belongs to the cluster 
with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into k 
clusters. 
 

If we limit the learning architecture to one layer, all of these algorithms have some advantages for some 
applications. The deep learning architectures currently provide the best solutions to many supervised learning 
problems; in other words, two layers are better than one layer.  In 2006, a publication by Hinton, Osindero, and 
Teh[1] introduced the idea of a “deep” neural network, which first trains a simple supervised model; then adds on a 
new layer on top and trains the parameters for the new layer alone. In this approach of completing one layer before 
moving into the next layer, one can argue that each layer can be any learning algorithm and the neural network is one 
of many candidates in each layer.  
 

The advantage of Deep Neural Network is to train all layers together; for example, TensorFlow [30], Torch 
[31], and Theano [32].  Google‟s TensorFlow is an open-source software library for dataflow programming across a 
range of tasks. It is a symbolic math library, and also used for machine learning applications such as neural 
networks.[3] It is used for both research and production at Google. Torch is an open source machine learning library 
and a scientific computing framework. Theano is a numerical computation library for Python. The approach with 
single training of multiple layers gives advantages to the neural network over other learning algorithms. 
 

If one accepts the assumption that deep learning currently provides the best solutions to many supervised 
learning problems, and if one further accepts that a single training of multiple layers is better than multiple training of 
single layers, then neural networks emerge as the only candidate. Therefore, it is important to study the neural 
network algorithm thoroughly. In this paper, we introduce the concepts of Linear neurons, and new learning algorithms 
based on Linear neurons, with an explanation of the reasons behind these algorithms.  
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This approach advances the current state of understanding of neural networks by stating that neural network is a 

part of a larger and complete expansion, where completeness means any function can be expanded. Based on the above 
discussion regarding the importance of the neural network, this different perception matters; it has both practical and 
theoretical significance. An alternative to the direction of “deep”, higher order is another direction. These two 
directions are equivalent [15]. In addition, both deep and higher order can be combined. In this paper, we review θ-
transformation and will introduce a new family of learning algorithms characterized by θ-transformation.  

 

In section 2, we briefly review how to use probability distributions in a Supervised Learning Problem. In this 
approach, given an input A, an output B, and a mapping from A to B, one can convert this problem to a probability 

distribution [4-8] of (A, B): p ( a, b ) , a ϵA, b ϵ B. If an input is a ϵA and an output is b ϵ B, then the probability p (a, b) 
will be close to 1. One can find a Markov chain [9] such that the equilibrium distribution of this Markov chain, p (a, b), 
realizes, as faithfully as possible, the given supervised training set.  

 

In section 3, the Boltzmann machines [4-8] are briefly reviewed. Our discussion concentrates on the distribution 
space of the Boltzmann machine rather than the neural aspects. All possible distributions together form a distribution 
space. All of the distributions, implemented by Boltzmann machines, define a Boltzmann Distribution Space, which is a 
subset of the distribution space [11-14]. Given an unknown function, one can find a Boltzmann machine such that the 
equilibrium distribution of this Boltzmann machine realizes, as faithfully as possible, the unknown function. A natural 
question is whether such an approximation is possible. The answer is that this approximation is not yet a good 
approximation. 

 

In section 4, we review the ABM (Attrasoft Boltzmann Machine) [10] which has an invariant distribution. An 
ABM is defined by two features: (1) an ABM with n neurons has neural connections up to the nth order; and (2) all of the 
connections up to nth order are determined by the ABM algorithm [10]. By adding more terms in the invariant distribution 
compared to the second order Boltzmann Machine, ABM is significantly more powerful to simulate an unknown 
function. Unlike the Boltzmann Machine, ABM‟s emphasize higher order connections rather than lower order 
connections. The Boltzmann Machine and the ABM are at the opposite end of the neuron orders. 

 

In section 5, we review θ-transformation [11-14].  
 

In section 6, we review the completeness of the θ-transformation [11-14]. The θ-transformation is complete; i.e. 
given a function, one can find a θ-transformation by converting it from the x-coordinate system to the θ-coordinate 
system. 

 

In section 7, we discuss how the invariant distribution of an ABM implements a θ-transformation [11-14], i.e. 
given an unknown function, one can find an ABM such that the equilibrium distribution of this ABM realizes precisely the 
unknown function. Therefore, an ABM is complete. 

 

In section 8, we show that the ABM algorithm is derived from the θ-transformation. We call the neurons in the 
ABM algorithm the exponential neurons, because of its exponential generating function. We introduce a new algorithm, 
and we will call the neurons in the new algorithm, linear neurons, because of its generating functions. The new algorithm 
uses summation in expansion, while the ABM algorithm uses multiplication in expansion. Therefore, the new algorithm is 
more stable. 

 

In section 9, we introduce a simple example to test the algorithm. 
  

2. Basic Approach  
 

The basic supervised learning [2] problem is:  given a training set {A, B}, where A = {a1, a2, … } and B = {b1, b2, 
…},  find a mapping from A to B.  It turns out that if we can reduce this from a discrete problem to a continuous 
problem, it is very helpful. The first step is to convert this problem to a probability [4-8]:  

p = p (a, b), a ϵ A, b ϵ B. 
 

If a1 matches with b1, the probability is 1 or close to 1. If a1 does not match with b1, the probability is 0 or close to 
0. This can reduce the problem of inferencing a mapping from A to B to inferencing a distribution function. An 
irreducible finite Markov chain possesses a stationary distribution [9].  

This invariant distribution can be used to simulate an unknown function.  
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3. Boltzmann Machine 
 

A Boltzmann machine [4-8] is a stochastic neural network in which each neuron has a certain probability to be 1. 
The probability of a neuron to be 1 is determined by the Boltzmann distribution. The collection of the neuron states:  x = 
( x1, x2, ..., xn )of a Boltzmann machine is called a configuration. The configuration transition is mathematically described 

by a Markov chain with 2n configurations x ϵ X, where X is the set of all points, ( x1, x2, ..., xn ). When all of the 
configurations are connected, it forms a Markov chain. A Markov chain has an invariant distribution [9]. Whatever initial 
configuration that a Boltzmann starts from, the probability distribution converges over time to the invariant distribution, 
p(x). The configuration x ε X appears with a relative frequency of p(x) over a long period of time. 

 

A Boltzmann machine [4-8] defines a Markov chain. Each configuration of a Boltzmann machine is a state of the 
Markov chain. A Boltzmann machine has a stable distribution. Let T be the parameter space of a family of Boltzmann 
machines. An unknown function can be considered as a stable distribution of a Boltzmann machine. Given an unknown 
distribution, a Boltzmann machine can be inferred such that its invariant distribution realizes, as faithfully as possible, the 
given function. Therefore, an unknown function is transformed into a specification of a Boltzmann machine.  

 

More formally, let F be the set of all functions. Let T be the parameter space of a family of Boltzmann machines. 
Given an unknown f  ε F, one can find a Boltzmann machine such that the equilibrium distribution of this Boltzmann 
machine realizes, as faithfully as possible, the unknown function [4-8]. Therefore, the unknown, f, is encoded into a 

specification of a Boltzmann machine, t ϵ T. We call the mapping from F to T as a Boltzmann Machine Transformation: F 

 T [11-14].  
 

Let T be the parameter space of a family of Boltzmann machines, and let FT be the set of all functions that can be 
inferred by the Boltzmann Machines over T; obviously, FT is a subset of F. It turns out that FT is significantly smaller than 
F so it is not a good approximation for F. The main contribution of the Boltzmann Machine is to establish a framework 
for inferencing a mapping from A to B.  
 

4. Attrasoft Boltzmann Machines (Abm) 
 

     The invariant distribution of a Boltzmann machine [4-8] is: 

If the threshold vector does not vanish, the distributions is: 

By rearranging the above distribution, we have: 

e = p(x) xxM + xT - c jiijj<iii   

It turns out that the third order Boltzmann machines have the following type of distributions:  

An ABM [11-14] is an extension of the higher order Boltzmann Machine to the maximum order. An ABM with n 
neurons has neural connections up to the nth order. All of the connections up to the nth order are determined by the ABM 
algorithm [10]. By adding additional higher order terms to the invariant distribution, ABM is significantly more powerful 
to simulate an unknown function.  
By adding additional terms, the invariant distribution for an ABM is: 

e = p(x) H , 
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 e b = p(x) xxM jiijj<i . 

 .e b = p(x) xT-xxM iijiijj<i   

 e = p(x) xxxM + xxM + xT - c kjiijkk<j<ijiijj<iii  . 
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ABM is significantly more powerful to simulate an unknown function. As more and more terms are added, from 

the second order terms to the nth order terms, the invariant distribution space will become larger and larger. Like 

Boltzmann Machines in the last section, ABM implements a transformation, FB T.  We will show that this ABM 

transformation is complete so that given any function f ϵ F, we can find an ABM, t ϵ T, such that the equilibrium 
distribution of this ABM realizes precisely the unknown function.  
 

5. Θ - Transformation 
 

5.1 Basic Notations  
 

We first introduce some notations used in this paper [11-14]. There are two different types of coordinate systems: 
the x-coordinate system and the θ-coordinate system [11-14]. Each of these two coordinate systems has two 
representations, x-representation and θ-representation. An N-dimensional vector, p, is: 

) p ... ,p ,p ( = p
1-N10

, 

which is the x-representation of p in the x-coordinate systems.In the x-coordinate system, there are two representations of 
a vector:  
 

 { pi } in the x-representation, and  

 { pm
i1i2 ..im } in the θ-representation.  

 

In the θ-coordinate system, there are two representations of a vector: 
 

 { θi } in the x-representation, and  

 { θmi1i2 ..im } in the θ-representation. 
 

The reason for the two different representations is that the x-representation is natural for the x-coordinate system, and the 
θ-representation is natural for the θ-coordinate system.  
 

The transformations between { pi } and { pm
i1i2 ..im} , and those between { θi } and { θm

i1i2 ..im}, are similar. Because 
of this similarity, only the transformation between {pi} and {pm

i1i2 ..im} will be introduced. Let N = 2n be the number of 
neurons. An N-dimensional vector, p, is:  

Consider px , because x ϵ { 0, 1, ... N - 1 = 2n - 1 } is the position  inside a distribution, then x can be rewritten in the 
binary form: 

Some of the coefficients, xi , might be zero. In dropping those coefficients which are zero, we write: 

This generates the following transformation: 

where  

In this θ-representation, a vector p looks like: 
 

 ). p ... ,p ,p ( = p
1-N10

 

 .2x + 2x +... + 2x = x 0
1

1
2

1-n
n  

 .2 + 2+ ... + 2 =...xx x= x 1-i1-i1-i
imi2i1

12m  

 p = p = p
2 + 2+ ... + 2x

i...ii

m 1-i11-i21-im
m21

_
, 

 

 n.  i< ...< i < i  1 m21   
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The 0-th order term is p
0
, the first order terms are: ,...  , p  p    ,p

3

1

2

1

1

1
,  … The first few terms in the transformation 

between { pi } and { pm
i1i2 ..im} are: 

The x-representation is the normal representation, and the θ-representation is a form of binary representation. 
 

Example   Let n = 3, N = 2n = 8, and consider an invariant distribution: 
 

{ p0, p1, p2, p3, p4, p5, p6, p7}, 
 

where p0 is the probability of state x = 0, … .  There are 8 probabilities for 8 different states, x = {0, 1, 2, …, 7}. In the 
new representation, it looks like: 
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Note that the relative positions of each probability are changed. The first vector, { p0, p1, p2, p3, p4, p5, p6, p7},  is in the x-

representation and the second vector p p p pp  p    ,p    ,p
123
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10
,,,,  ,{ } is in the θ-representation. These two 

representations are two different expressions of the same vector. 
 
 

5.2 θ-Transformation 
 

Denote a distribution by p, which has a x-representation in the x-coordinate system, p(x), and a θ-representation 
in the θ-coordinate system, p(θ). When a distribution function, p(x) is transformed from one coordinate system to another, 
the vectors in both coordinates represent the same abstract vector. When a vector q is transformed from the x-
representation q(x) to the θ-representation q(θ), and then q(θ) is transformed back to q'(x), then these two vectors are 
equal: q'(x) = q(x). The θ-transformation uses a function F, called a generating function. The function F is required to have 
the inverse: 

  .F =G    I,= GF =FG -1  

Let p be a vector in the x-coordinate system. As already discussed above, it can be written either as:  
 

) p ... ,p ,p ( = p(x)
1-N10

, 

Or 

) p ,... ,p ;p  ,... ,p;p ..., ,p ;p ( = p(x)
12..n

n
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      The θ-transformation transforms a vector from the x-coordinate to the θ-coordinate via a generating function. The 
components of the vector p in the x-coordinate, p(x), can be converted into components of a vector p(θ) in the θ-
coordinate:  

 

... ,p = p     p = p     ,p = p
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Let F be a generating function, which transforms the x-representation of p in the x-coordinate to a θ-
representation of p in the θ-coordinate system. The θ-components are determined by the vector F[p(x)] as follows: 

Where 

n.  i< ...< i < i  1 m21   
 

Prior to the transformation, p(x) is the x-representation of p in the x-coordinate; after transformation, F[p(x)] is a θ-
representation of p in the θ-coordinate system. 
 
There are N components in the x-coordinate and N components in the θ-coordinate. By introducing a new notation X: 

then the vector can be written as: 

By using the assumption GF = I, we have: 
 

}XG{ = p(x) JJ , 
 

where J denotes the index in either of the two representations in the θ-coordinate system. 
 

The transformation of a vector p from the x-representation, p(x), in the x-coordinate system to a θ-representation, p(θ), in 
the θ-coordinate system,  is called θ-transformation [11-14]. 
 

    The θ-transformation is determined by [11-14]: 
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The inverse of the θ-transformation [11-14] is:    

5.3 An Example 
 

Let an ANN have 3 neurons: 
 ( x1, x2, x3 ) 
and let a distribution be: 
 { p0, p1, p2, p3, p4, p5, p6, p7}. 
Assume that the generating functions are: 
F(y) = log (y),  G(y) = exp ( y ). 
By θ-transformation, the components are [11-14]: 

p

p
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 =    p = 
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The inverse are: 

),exp(),exp(),exp(,)exp( 3210320210100      p   p  p    p  

),exp(),exp(),exp( 6420654105404      p   p   p  

).exp( 765432107         p  

Because of the nature of the exponential function, the 0 probability is 0 = e -∞, so the minimum of the probability, pi , will 
be some very small value, ε, rather than 0 to avoid singularity.  
Example  
 Let p = {2, 7, 3, 8, 2, 5, 5, 6}, then θ = {0.693, 1.252, 0.405, -0.271, 0, -0.336, 0.510, -0.462}. 
Example  
 Let θ = {0, 0, 0, 0, 0, 0, 0, 2.302}, then p = {1, 1, 1, 1, 1, 1, 1, 10}. 
Example  
 Let θ = {2.302, -0.223, -1.609, 1.832, -0.510, -0.875, 1.763, -1.581}, then p = {10, 8, 2, 10, 6, 2, 7, 3 }. 
 

6. Θ – Transformation Is Complete 
 

Because the θ-transformation is implemented by a normal function, FG = GF = I, as long as there is no singular 
points in the transformation, any distribution function can be expanded. For example, in the last section, we require pi >= ε, 
which is a predefined small number. 
 

7. Abm Is Complete 
 

An ABM with n neurons has neural connections up to the nth order. The invariant distribution is: 

e = p(x) H , 
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An ABM implements a θ-transformation [11-14] with: 
F(y) = log (y),  G(y) = exp ( y ). 
Furthermore, the “connection matrix” element can be calculated as follows [11-14]: 

The reverse problem is as follows: given an ABM, the invariant distribution can be calculated as follows [11-14]:    

Therefore, an ABM can realize a θ-expansion, which in turn can approximate any distribution. ABM is complete [11-14]. 
Write the above equation: 

)....   ...    
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We call the neurons in the ABM algorithm the exponential neurons, because of its exponential generating 
function. The ABM algorithm uses multiplication expansion, which raises the question of stability. Therefore, we expect 
to improve this algorithm. 
 

8. A New Algoritm 
 

If we can convert the multiplication expansion to addition expansion, then the performance will be more stable.  
Let : 
G = X, F = X, 
from section 5, we have: 
 

...pp...p pp...pp = i...i

3-m
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1-m
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m
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m21
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m21m21







 

 

We call the neurons in the new algorithm as linear neurons, because of its generating functions. The new 
algorithm uses summation in expansion. 
For simplicity, we will continue to call the cell “neurons”. Because G = F = I, we call these neurons identify neurons.  
Example: let an ANN have 3 neurons,  ( x1, x2, x3 ) and let a distribution be: 
 
 { p0, p1, p2, p3, p4, p5, p6, p7}, 

 
...pp...p

pp...pp
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Then, 

),(),(),(,)( 3210320210100      p   p  p    p  

),(),(),( 6420654105404      p   p   p  

).( 765432107         p  

 
This is the starting point for the new algorithm. When the expansion is complete, it has the advantage of 

accuracy.  When the expansion uses addition, it has the advantage of stability. As we will show below, it also has a third 
advantage of fast training (low time complexity).   
 
The L1 –distance between two configurations is:  
  d ( x’, x ) =| x’1−x1|  +  | x’ 2−x2 | + … 
 
For example, d (111, 111) = 0; d (111, 110) = 1.  
We now introduce a new algorithm, the Linear neuron learning algorithm, which can be summarized into a single 
formula:  
   

  )),((^2 xxdD i...ii
m

i...ii
m

m21m21   ,     Dxxdif i...ii
m

m21  ),(0  

  0 i...ii
m

m21 ,                                     Dxxdif i...ii
m

m21 ),(  

 

Where ),( xxd i...ii
m

m21  is the distance between a neuron configuration, x, and a training neuron configuration, x i...ii
m

m21 , 

and D is called a connection radius. Beyond this radius, all connections are 0.  
The linear neurons learning algorithm is: 
Step 1. The First Assignment (d=0) 

The first step is to assign the first connection matrix element for training vector, x = x i...ii
m

m21 . We will assign:  

θx =  i...ii
m

m21   = 2D, 

while D is the radius of the connection space.  
Step 2. The Rest of the Assignment  
The next step is to assign the rest of the weight: 
 

  )),((^2 xxdD i...ii
m

i...ii
m

m21m21   ,     Dxxdif i...ii
m

m21  ),(0  

  0 i...ii
m

m21 ,                                     Dxxdif i...ii
m

m21 ),(  

Step 3. Modification  
The algorithm uses bit “1” to represent a pattern or a class; so, the input vectors or the output vectors cannot be all 
0‟s; otherwise, these coefficients are 0.  
Step 4. Retraining 
  Repeat the last three steps for all training patterns; if there is an overlap, take the maximum values: 

   i...ii
m

m21 (t+1) = max { i...ii
m

m21  (t),  i...ii
m

m21  }. 

 
If we set D = 2, then the possible elements are: 2D-d = 4, 2, 1, and 0. There is one term for d = 0; there are no more 
than n terms for d = 1; and there are no more than n(n-1)/2 terms for d = 2. Assume there are m training vectors, the 
time complexity for training is: 
T = O (m n2). 
In general,  
T = O (m nD). 
The advantage of this new algorithm is completeness (accuracy), stability, and fast speed. 
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9. An Example 
 

In this section, we will first use the linear neuron algorithm; then we will use the square and power neuron 
algorithms. The example is to identify simple digits in Figure 1 [1, 2, 13]. Each digit is converted into 7 bits: 0, 1,  …, 6. 
Figure 2 shows the bit location.  
 

 
Figure 1. An example. 

 

 
Figure 2. Input bit assignments. 

 
The 10 input vectors have 7 bits: 
 
 I0 = ( 1, 1, 1, 0, 1, 1, 1), 
 I1 = ( 0, 0, 1, 0, 0, 1, 0), 
 I2 = ( 1, 0, 1, 0, 1, 0, 1), 
 … 
The 10 output vectors have 10 bits: 
 
 O0 = (1, 0, 0, 0, 0,  0, 0, 0, 0, 0), 
 O1 = (0, 1, 0, 0, 0,  0, 0, 0, 0, 0), 
 O2 = (0, 0, 1, 0, 0,  0, 0, 0, 0, 0), 
 … 
 

The 10 training vectors have 17 bits: 
 
 T0 = (I0, O0) = ( ( 1, 1, 1, 0, 1, 1, 1), (1, 0, 0, 0, 0,  0, 0, 0, 0, 0) ), 
 T1 = (I1, O1) = ( ( 0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 0,  0, 0, 0, 0, 0) ), 
 … 
We will set the radius: D = 2; the possible elements are: 2D-d = 4, 2, 1, and 0.  We will work out a few examples. First, we 
rewrite T1 as: 

  x
259
3  = ( ( 0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 0,  0, 0, 0, 0, 0) ). 

The first connection element (0-distance) is: 4259
3  . There are two coefficients for d = 1:  229

2
59
2  . T1 generates 

3 coefficients.  025
2  , due to step 3 of the algorithm; in this case, the output vector is all 0‟s. 

Next, we rewrite T7 as: 

  x
14,5,2,1

4  = ( ( 1, 0, 1, 0, 0, 1, 0), (0, 0, 0, 0, 0,  0, 0, 1, 0, 0) ). 

The first connection element (0-distance) is: 414,5,2,1
4  . There are 3 coefficients for d=1: 214,5,2

3
14,5,1

3
14,2,1

3   . 
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There are 3 coefficients for d = 2: 114,5
2

14,2
2

14,1
2   . T7 generates 7 coefficients.  

Last, we rewrite T4 as: 
 

  x
11,5,3,2,1

5  = ( ( 0, 1, 1, 1, 0, 1, 0), (0, 0, 0, 0, 1,  0, 0, 0, 0, 0) ), 

 

the first connection element (0-distance) is: 411,5,3,2,1
5  . There are 4 coefficients for d=1: 

211,5,3,2
4

11,5,3,1
4

11,5,2,1
4

11,3,2,1
4   . There are 6 coefficients for d = 2: 1...11,3,1

2
11,2,1

3  . T4 generates 11 

coefficients.  

After training the linear neuron algorithm with {T0, T1, …, T9}, all of the connection coefficients,  i...ii
m

m21 , are 

calculated. For example, the probability is p
259

3
, if the input is „1‟ and the output is in class 1; the probability is p

258

3
, if 

the input is „1‟ and the output is in class 0; the probability is p
10,5,2

3
, if the input is „1‟ and the output is in class 2; … 

 
Section 7 provides the formula to calculate the probability of each (input, output) pair: 
 

. +... +

 

+ ... +  +  +

 

 +... +  +  +  = p

i...ii
m

ii
2

ii
2

ii
2

i
1

i
1

i
10

i...ii

m

m21

m1-m3121

m21m21







 

For example, 

  + +  +  + +  +  +  = p 2221110 
259
3

592925952259

3
. 

 

The character recognition results are given in Figure. 3, where the first column is input, then the next 10 columns 
are output. The output probability is not normalized in Figure 3. The relative probability for (input = 0, output = 0) is 31; 
those for (input = 0, output = 1) are 8; those for (input = 0, output = 2) are 6;  … . So if the input is digit 0, the output is 
identified as 0.  In this problem, the output is a single identification, so the largest weight determines the digit 
classification. In each case, all input digits are classified correctly. 
 

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 P9 

0 31 8 6 6 5 6 7 13 8 7 

1 0 8 0 0 1 0 0 4 0 0 

2 1 2 24 6 1 1 1 4 1 1 

3 1 8 6 24 5 6 1 13 1 7 

4 0 8 0 1 18 1 0 4 0 1 

5 1 2 1 6 5 24 7 4 1 7 

6 7 2 6 6 5 24 31 4 8 7 

7 0 8 0 1 1 0 0 13 0 0 

8 31 8 24 24 18 24 31 13 39 31 

9 7 8 6 24 18 24 7 13 8 31 

 
Figure 3.  The results from the new linear neuron algorithm without normalization 

 

10. Conclusion 
 

In conclusion, we have introduced a new algorithm. We have reviewed the Attrasoft Boltzmann Machine (ABM). 
An ABM with n neurons has neural connections up to the nth order. We have reviewed the θ-transformation and shown 
that the θ-transformation is complete, i.e. any function can be expanded by θ-transformation. We have further shown the 
invariant distribution of the ABM is a θ-transformation; therefore, an ABM can simulate any distribution.  
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An ABM with n neurons has neural connections up to the nth order. We have observed that θ-transformation 

defines a whole family of neurons. The θ-neurons generally emphasize higher order neurons rather than lower order 
neurons. The ABM uses exponential neurons. In this paper, we use linear neurons. We discussed that the ABM algorithm 
is only the first algorithm in a family of new algorithms based on the θ-transformation. We introduced the simplest 
algorithm in this family. We also discussed the advantages of this algorithm: accuracy, stability, and low time complexity.   
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