
Journal of Computer Science and Information Technology
June 2023, Vol. 11, No. 1, pp. 1-9

ISSN: 2334-2366 (Print), 2334-2374 (Online)
Copyright © The Author(s). All Rights Reserved.

Published by American Research Institute for Policy Development
DOI: 10.15640/jcsit.v11n1a1

URL: https://doi.org/10.15640/jcsit.v11n1a1

Performance Evaluation of Cryptographic File System Algorithmsin Consumer Electronic Devices

Dr. Gennady Lomako1

Abstract

Consumer electronics (CE) products are showing strong growth in usage and purchase intent. Consumers are
driving a revolution in the way they access, store, and use digital content. With constant upgrade cycles and
data capacity increases, securing personal data becomes a more important problem every day. Cryptographic
file systems allow a consumer to encrypt and password-protect removable drives, including universal serial bus
(USB) drives, memory sticks, and flash cards. Linux and open source provide different solutions for this
matter. Linux is a popular choice for application developers of today's the Internet of Things (IoT)and wireless
consumer devices because of its flexibility and ease of use. However, wide usage of cryptographic file systems
is limited due to its lack of standardization. The wrong choice of API could leave users with a false sense of
performance, or worse, with a false sense of security. This paper performs a comprehensive comparison of
cipher algorithms and investigates the usage of the Linux Cryptoloop and Dm-crypt Crypto application
programming interfaces (APIs) and demonstrates their performance in cryptographic file systems most
commonly used in CE, to help users decide which encryption method and algorithm should be used.

Keywords: Encryption Methods,Cryptographic File Systems, Consumer Electronic Devices

1. Introduction

Over the last decade, consumer electronic devices, which are limited in capability, have experienced a period
of exceptional growth and require creating a more secure computing, storage, and communications environment.
While the consumer electronics market is growing and influencing wide fields of communication, financial
institutions, entertainment, and other services must satisfy their requirements and suggestions for information
security. The Gramm-Leach-Bliley Act, also known as the Financial Services Modernization Act and Federal Financial
Institutions Examination Council [1] suggests encryption of electronic customer information while it is in transit or
storage on network or systems to which unauthorized individuals may have access. As the consumer industry has
grown, devices connected to the IoT require a significant challenge in preparing security solutions to protect the data
exchanged [2]. In today's world of digital communication networks, the privacy and security of the transmitted data
has become a necessity for communication [3]. Data security schemes have been increasingly explored over time to
provide secure, real-time data storage for a variety of applications.[4, 5] and with respect to various attacks [6].
Recently many lightweight cryptography algorithms have been used in securing the resource constraint devices in IoT
[7].

File system encryption is typically used to protect data in storage providing security requirements for
electronic commerce transactions to make e-commerce transactions more secure [8]. Developers always desire to add
new features to file systems that offer a clean and efficient data access mechanism transparent to user applications [9].
Using the Linux Crypto API [10] tools, integrated into the kernel, you can quickly create new valuable features, such
as encryption, for efficient file systems without changing kernels or existing file systems. The Crypto API is an
approach to unify the interface between kernel modules using crypto routines and kernel modules providing crypto
routines.

1 Assistant Professor, Computer Information Systems Department, The School of Business, Medgar Evers College/ The City
University of New York, USA, 1650 Bedford Avenue, Room 2015-J, Brooklyn, New York 11225, USA. E-mail;
glomako@mec.cuny.edu (917) 670-4217

mailto:glomako@mec.cuny.edu

2 Journal of Computer Science and Information Technology, Vol. 11, No. 1, June 2023

This paper investigates the encryption/decryption performance of Crypto API cipher algorithms and
demonstrates their applications in file system encryption using Cryptolop [11] and Dm-crypt tools [12, 13].
Customers who are still on the fence about adopting open-source software will find detailed instructions and
information that could help them to move ahead with open-source strategies.

2. Consumer Electronics File Systems

Linux offers several different file systems to work with, such as cramfs and jffs2, which are highly used in
consumer electronic devices. Flash memory is an increasingly common storage medium for CE devices as well. The
cramfs is a read-only compressed file system, designed for simplicity and space efficiency [14, 15]. The cramfs uses a
translation layer on flash devices to emulate a block device [16]. The Journaling Flash File System, version 2 (jffs2)
[17], is a read/write compressed flash file system, commonly used in the embedded systems of consumer electronic
devices. The jffs2 was specifically designed for embedded applications requiring persistent storage in flash memory. It
places the file system directly on the flash chips to achieve this task. It can be mounted read/write and changes are
preserved after a reboot [18].

The jffs2 file system was designed for relatively small flash chips but has serious problems when it is used on
large flash devices. The ext2 file system is the most portable of the native Linux file systems that we used in tests for
comparison reasons.

3. Tools to Create an Encrypted File System

The IoT platform consists of tiny low-cost consumer electronics devices continuously exchanging data that
are usually limited in terms of hardware, memory capacity, and processing power [19].

Many devices use file systems to store critical information that requires absolute reliability and protection.
Among several Linux tools that allow you to create an encrypted file system, we consider Cryptoloop and Dm-crypt
specifically. They make it possible to create encrypted file systems within a partition or another file in the file system.
These encrypted files can be moved to a CD, DVD, or USB memory stick, etc. Dm-crypt is based on the device
mapper and is considered to be a much cleaner code write, providing much more configuration flexibility than
Cryptoloop. Cryptoloop and dm-crypt are based on the Crypto API and offer pretty much the same functionality.
They can be used to add encryption to any of the standard Linux file systems without changing the file system code
itself.

The user can specify one of the Crypto API symmetric ciphers with any allowed size key to create and mount
an encrypted file system. Without the key, you can't access data in the file system. As a practical matter, we limited our
search to well-known cipher algorithms integrated into the Linux kernel, such as aes, blowfish, cast6, serpent, and
twofish [20]. This allows us to share encrypted file systems with others with a minimum amount of hassle.

4. Timing Commands

To get the timing of a code we used the Linux time shell command and a time-stamp counter. We developed
a more accurate way to use a time-stamp counter, which keeps a count of every cycle that occurs on the processor[21].
The timestamp counter is a 64-bit register that is incremented every clock cycle. It can be read from both kernel space
and user space, and the time-stamp counter is set to zero on reset. We used the read time-stamp counter
rdtsc(low_var, high_var) macro, which reads the low half of the register into a 32-bit variable low_var, and the high
half of the register into a 32-bit variable high_var. The rdtsc measures cycles.

We then used the rdtsc macro as timers, calling it before and after the section of code we want to time. The
difference, converted from ticks to seconds, became the elapsed time for one run of the code. The elapsed times are
accumulated by timers as a cryptographic component of the completed instructions. These instructions include: create
an encrypted file system, mount a file system, and read, write, copy, and remove a file, etc. We then created a special
kernel module and tested this timing method by encrypting and decrypting of a 1024-byte array using CryptoAPI
cipher algorithms, as shown in Fig. 1.

Dr. Gennady Lomako 3

Fig. 1. Cryptography of 1024-byte array using testing timing method.

We patched both cryptoloop.c and dm-crypt.c with created timers.

We controlled the high half of the register to recover from overflows, but we did not need to access the
whole register. Here is one of the code sections in the modified Cryptoloop module, to measure the encdecfunc(tfm,
&sg_out, &sg_in, sz) procedure elapsed time:
unsigned long long ticks_elapse_total; //global timer
unsigned long begl, begh, endl, endh;//local
#include <asm/msr.h> // Machine-specific registers
#include "cryptolapse.h" //External variable definition
. . .
rdtsc(begl, begh);
encdecfunc(tfm, &sg_out, &sg_in, sz);
rdtsc(endl, endh);
. . .
ticks_elapse_total += endl - begl;

The ticks_elapse_total timer accumulates the encdecfunc procedure elapsed time during the encryption/decryption
performance.

The low half of the register was sufficient in all our cases. Our 430-MHz system will overflow a 32-bit
counter once about every 8.5 seconds, and a 2400-MHz system about every 1.7 seconds. The elapsed time we were
benchmarking, reliably takes less time. To avoid a counter overflow influence, we controlled a series of procedure
elapsed times and ignored anyone that exceeded twice the previous elapsed time.

5. System Setup

To provide encryption, we used the Linux loopback device driver to present a file as a block device,
optionally transforming the data before it is written and after it is read from the native file. Cryptoloop and Dm-crypt
use a cryptographic framework, CryptoAPI, which exports a uniform interface for all ciphers we tested.

4 Journal of Computer Science and Information Technology, Vol. 11, No. 1, June 2023

Fig. 2. Benchmarks.

We investigated three benchmarks shown in Fig. 2 for the loopback driver: (a) a raw device (e.g., /dev/hda9
and /dev/sda1), (b) a pre-allocated file, (c) another pre-allocated file and a special device that is required by Dm-crypt
and jffs2 file system, such as MTD block and device-mapper [22]. The major difference between a raw device and a
pre-allocated file is that a file system, created in a file, could be copied to flash memory.

Both Cryptoloop and Dm-crypt, jffs2 encrypted file systems, follow benchmark (c) shown above. An
encryption structure for dm-crypt commands is shown in Fig. 3.

Fig. 3. Dm-crypt jffs2 FS encryption structure.

Here are complete instructions to create a Dm-crypt encrypted jffs2 file system on the pre-allocated file imagefs.jffs2:
losetup /dev/loop0 image-fs.jffs2
cryptsetup -c aes -y create image-fs.jffs2 /dev/loop0
mkfs.jffs2 -e128 -p33554432 -d empty -o /dev/mapper/image- fs.jffs2
modprobe blkmtd erasesz=128 device=/dev/mapper/image-fs.jffs2
mount -t jffs2 /udev/mtdblock0 mnt
The instructions to create Cryptoloop encrypted jffs2 file system on the pre-allocated file image-fs.jffs2:
losetup -e aes-256 /dev/loop0 image-fs.jffs2

Dr. Gennady Lomako 5

mkfs.jffs2 -e128 -p33554432 -d empty -o /dev/loop0
modprobe blkmtd erasesz=128 device=/dev/loop0
mount -t jffs2 /udev/mtdblock0 mnt

Both cramfs and ext2 file systems, encrypted by Cryptoloop, follow benchmark (b) in Fig. 2. We created ext2 file
systems on the pre-allocated file image-fs.ext2 using these instructions:

losetup -e aes-256 /dev/loop0 image-fs.ext2 mkfs.ext2 -b 1024 /dev/loop0
mount -t ext2 /dev/loop0 mnt

We then created cramfs file systems on the pre-allocated file image-fs.cramfs using these instructions:

losetup -e aes-256 /dev/loop0 image-fs.cramfs mkfs.cramfs dir-root-files /dev/loop0
mount -t cramfs /dev/loop0 mnt

Both cramfs and ext2 file systems, encrypted by Dm-crypt, follow benchmark (c) in Fig. 2. We then created Dm-crypt
ext2 file systems on the pre-allocated file image-fs.ext2 using these instructions:

losetup /dev/loop0 image-fs.ext2
cryptsetup -c aes -y create image-fs.ext2 /dev/loop0 mkfs.ext2 /dev/mapper/image-fs.ext2
mount /dev/mapper/image-fs.ext2 mnt

We then created Dm-crypt cramfs file systems on the preallocated file image-fs.cramfs using these instructions:

losetup /dev/loop0 image-fs.cramfs
cryptsetup -c aes -y create image-fs.cramfs /dev/loop0 mkfs.cramfs dir-root-files /dev/mapper/image-fs.cramfs
mount /dev/mapper/image-fs.cramfs mnt

6. Test Beds

Consumer electronics devices cover a wide-ranging field of electronics with a broad spectrum of processor
speed, memory type, memory size, and data. We ran our tests using single user and multiuser modes on two
workstations, 430 MHzand 2.4 GHz. All tests took place on a 13.6GB disk and 128MB Flash Memory Key. To
minimize the impact of cache and other I/O operations, all tests were performed on a cold cache, achieved by un-
mounting, and remounting the file systems, removing modules, and detaching the loop device between iterations. The
tests were located on a dedicated partition in the outer sectors of the disk and in a flash memory key. We documented
the command elapsed time (real time), the time involved in the test kernel processes (sys time), and the elapsed time
spent encrypting/decrypting (crypto elapsed time). We ran all the tests several times.

7. Performance Comparison

Security benefits of an encrypted file system necessitate encryption overhead time that makes operation
performance slower from 47% for the twofish cipher algorithm to 113% for the cast6 cipher algorithm, as shown in
Fig. 4. This happened when writing a 50 MB file to an encrypted ext2 file system, which was created on a 128 MB
key flash by Cryptoloop. We also used different CryptoAPI cipher algorithms.

Fig. 4. Write 50 MB file into 128MB key flash encrypted ext2 file system.

6 Journal of Computer Science and Information Technology, Vol. 11, No. 1, June 2023

The most important commands related to the file system creation and usage are mkfs, mount, read, and write.
Table 1 shows the cryptographic part of the performed commands on an encrypted 32 MB jffs2 file system using
Cryptoloop and Dm-crypt.

TABLE I ENCRYPTED JFFS2 FS COMMAND'S PERFORMANCE

The encryption and decryption elapsed time level of commands is an important metric for analysis of
encrypted file system performance. Based on the proposed timing method we compared and contrasted the file
system performance of encryption by Cryptoloop and Dm-crypt cramfs, jffs2, and ext2 file systems, using Linux
Crypto API cipher algorithms aes, blowfish, cast6, serpent, and twofish that are all licensed free for any use. For all
cipher algorithms we used 256-bit key size.

Jffs2 is a compressed file system that directly reads and writes to flash and scans all nodes at mount time. We
assumed that files and folders that are to be encrypted by the file system require about 32 MB. To study the effects of
encryption, we analyze jffs2 with small files (about 3% of the 32 MB file system size) and big files (about 30% of the
32 MB file system size). Dm-crypt and Cryptoloop show similar trends on small file sizes.

Fig. 5. Mounting (mount) encrypted jffs3 file system with different file sizes performance.

As the file size increases, Dm-crypt spends less crypto time than Cryptoloop (Table 1, Fig. 5). As you can see, each
cipher algorithm requires a different crypto time (Fig. 6).

Dr. Gennady Lomako 7

Fig. 6. Creation (mkfs) encrypted 32MB jffs2 file system using Cryptoloop and Dm-crypt and different ciphers.

Table 1 and Fig. 5 show that jffs2 takes more time to mount a file system with bigger files since it scans all nodes at
mount time. As for cramfs, the contents are decrypted as needed, and the mount time is almost independent of file
size in the file system. These results can also be seen in Table 2 which shows crypto elapsed time for commands on
32MB encrypted cramfs FS using Cryptoloop and Dm-crypt.

This table shows that Cryptoloop performs faster creation and mounting of cramfs file systems than Dm-crypt and
lags a little on reading both small and big files.

TABLE IIENCRYPTED CRAMFS FS COMMAND'S PERFORMANCE

For benchmarking Dm-crypt and Cryptoloop, we used our second2.4 GHz processor test bed. We certainly
see some different results due to the higher performance machine in Table 3 which shows crypto elapsed time for
commands on 32MB encrypted cramfs and ext2 file systems, using Cryptoloop and Dm-crypt. We also tested crypto
elapsed time for reading and writing of 1 MB file.

For most of the operations, Cryptoloop, still outperforms Dm-crypt, and shows similar performance
regarding each algorithm. The biggest difference between cramfs and ext2 is the time it takes to make the file system.
The cramfs is clearly much faster than ext2.

8 Journal of Computer Science and Information Technology, Vol. 11, No. 1, June 2023

TABLE III ENCRYPTED FS COMMAND'S PERFORMANCE

8. Conclusion

The contributions of this work are that we generalized benchmarks for Linux cryptographic file systems and
the performance of Crypto API cipher algorithms. We showed the prototype of the implemented benchmarks to
create the desired cryptographic file systems of your choice (jffs2, cramfs, and ext2) and mount it to the location of
your choice (dedicated partition, file on another file system, CD, USB memory stick). We developed a timer module
for timing investigation of cryptographic activities for the Linux Cryptoloop and Dm-Crypt methods and performed a
comprehensive comparison of cipher algorithms (aes, blowfish, cast6, serpent, and twofish) and their usage in the
ext2, cramfs, and jffs2 cryptographic file systems, measuring more specific aspects of encryption/decryption
performance in CE devices. These results can be used by a system designer to estimate the crypto-timing
consumption of encrypted cramfs, jffs2, and ext2 file systems.

References

Gramm-Leach-Bliley Act, (1999). [Online] Available:
 https://www.ftc.gov/business-guidance/privacy-security/data-security (July 23, 2023)
Careful Connections: Keeping the Internet of Things Secure, (2020). [Online] Available:
 https://www.ftc.gov/business-guidance/resources/careful-connections-keeping-internet-things-secure (July

23, 2023)
Sunny A. (2022). A Review on Various Methods of Cryptography for Cyber Security. Journal of Algebraic Statistics,

vol. 13, no. 3, 2022, 5016-5024.
Singhal, V., Singh, D., & Gupta, S. K., “Crypto STEGO Techniques to Secure Data Storage Using DES, DCT,

Blowfish and LSB Encryption Algorithms”, Journal of Algebraic Statistics. 2022, vol. 13, no. 3, p1162-1171.
Pandey, A. & P. Bonde, P. Performance evaluation of various cryptography algorithms along with LSB substitution

technique. International Journal of Engineering Research & Technology (IJERT), vol. 2, no. 6, 2013, pp. 866-
871.

Jammula, M., Vakamulla, V. M., &Kondoju, S. K. (2022). Performance evaluation of lightweight
cryptographic algorithms for heterogeneous IoT environment. Journal of Interconnection Networks, 2022
Supplement, vol. 22, 1-21.

Dr. Gennady Lomako 9

Mousavi, S. K., Ghaffari, A., Besharat, S., &Afshari, H. (2021). Security of internet of things based on

cryptographic algorithms: a survey. Wireless Networks (10220038), vol. 27, no. 2, 1515-1555.
Shyaa, G. S. & Al-Zubaidie, M. (2023). Utilizing Trusted Lightweight Ciphers to Support Electronic-Commerce

Transaction Cryptography. Applied Sciences (2076-3417), Jun2023, vol. 13, no. 12, 7085-7111.
Wright, C., Martino, M., & Zadok, E. NCryptfs: A Secure and Convenient Cryptographic File System. USENIX 2003

Annual Technical Conference, San Antonio, Texas, 197-210.
The GNU/Linux CryptoAPI site: www.kernel.org.
 Mueller, S. &Vasut, M. CryptoAPI. [Online] Available:
 https://www.kernel.org/doc/html/latest/crypto/index.html (July 23, 2023)
Hoelzer, Ralf. Cryptoloop HOWTO. [Online] Available:
 http://www.ibiblio.org/pub/Linux/docs/HOWTO/Cryptoloop-HOWTO (July 23, 2023)
Broz, Milan, (2021), Dm-crypt: Linux kernel device-mapper crypto target. [Online] Available:
 https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt (July 23, 2023)
Project ID: 195655. Cryptsetup and LUKS - open-source disk encryption. [Online] Available:

https://gitlab.com/cryptsetup/cryptsetup (July 23, 2023)
Notes on filesystem layout. [Online] Available: http://lxr.linux.no/source/fs/cramfs/README (July 23, 2023)
Ahn, S., Hyun, S., Kim, T. & Bahn, H. (2013). A compressed file system manager for flash memory basedconsumer

electronics devices. IEEE Transactions on Consumer Electronics, vol. 59, no. 3, 544-549.
Quinlan, Daniel. cramfs tools. [Online] Available:
 https://sourceforge.net/projects/cramfs/ (July 23, 2023)
Woodhouse, David (2003). JFFS2: The Journalling Flash File System, version 2. [Online] Available:

https://www.sourceware.org/jffs2/ (July 23, 2023)
Pan, Y., Hu, Z., Zhang, N., Hu, H., Xia, W., Jiang, Z., Shi, L., & Li, S. (2022). HNFFS: Revisiting the NOR Flash File

System. 2022 IEEE 11th Non-Volatile Memory Systems and Applications Symposium (NVMSA), 14-19.
Gookyi, D. A. N., Ryoo, K. (2022). A Lightweight System-On-Chip Based Cryptographic Core for Low-Cost Devices.

Sensors (14248220), Apr2022, vol. 22, no. 8, 1-28.
Stallings, W. (2020). Cryptography and Network Security: Principles and Practice. (8th ed.). Pearson (Chapters 3-7).
Corbet, J., Rubini, A., &Kroah-Hartman, G. (2005). Linux Device Drivers. (3rd ed.). O’Reilly (Chapters 7). [Online]

Available: https://www.oreilly.com/openbook/linuxdrive3/book/
 (July 23, 2023)
Lomako, G. & Frank Delmas, F. Performance of Two Linux Methods for Encrypting Data at the File System Level in

CE Devices. In 4th IEEE Consumer Communications and Networking Conference, CCNC 2007, Las Vegas,
NV, USA, January 11-13, 2007, IEEE, 2007, 1176-1177.

https://gitlab.com/mbroz

